Note: Online information is listed by chapter and section number followed by page numbers (OL3.11-7). Page references preceded by a single letter with hyphen refer to appendices.

1-bit ALU, B-26–29. See also Arithmetic logic unit (ALU)
- adder, B-27
- CarryOut, B-28
- for most significant bit, B-33
- illustrated, B-29
- logical unit for AND/OR, B-27
- performing AND, OR, and addition, B-31, B-33

32-bit ALU, B-29–38. See also Arithmetic logic unit (ALU)
- defining in Verilog, B-35–38
- from 31 copies of 1-bit ALU, B-34
- illustrated, B-36
- ripple carry adder, B-29
- tailoring to MIPS, B-31–35
- with 32 1-bit ALUs, B-30

32-bit immediate operands, 112–113
7090/7094 hardware, OL3.11-7

A

Absolute references, 126
Abstractions
- hardware/software interface, 22
- principle, 22
- to simplify design, 11
Accumulator architectures, OL2.21-2
Acronyms, 9
Active matrix, 18
add (Add), 64
add.d (FP Add Double), A-73
add.s (FP Add Single), A-74
Add unsigned instruction, 180
addi (Add Immediate), 64
Addition, 178–182. See also Arithmetic binary, 178–179
- floating-point, 203–206, 211, A-73–74
- instructions, A-51
- operands, 179
- significands, 203
- speed, 182
addiu (Add Imm Unsigned), 119
Add interleave, 381
Address interleave, D-24, D-25
Address space, 428, 431
- extending, 479
- flat, 479
ID (ASID), 446
- inadequate, OL5.17-6
- shared, 519–520
- single physical, 517
- unmapped, 450
- virtual, 446
Address translation
- for ARM cortex-A8, 471
- defined, 429
- fast, 438–439
- for Intel core i7, 471
- TLB for, 438–439
Address-control lines, D-26
Addresses
- 32-bit immediates, 113–116
- base, 69
- byte, 69
- defined, 68
- memory, 77
- virtual, 428–431, 450
Addressing
- 32-bit immediates, 113–116
- base, 116
- displacement, 116
- immediate, 116
- in jumps and branches, 113–116
- MIPS modes, 116–118
- PC-relative, 114, 116
- pseudodirect, 116
- register, 116
- x86 modes, 152
Address modes, A-45–47
- desktop architectures, E-6
addu (Add Unsigned), 64
Advanced Vector Extensions (AVX), 225, 227
AGP, C-9
Algol-60, OL2.21-7
Aliasing, 444
Alignment restriction, 69–70
All-pairs N-body algorithm, C-65
Alpha architecture
- bit count instructions, E-29
- floating-point instructions, E-28
- instructions, E-27–29
- no divide, E-28
- PAL code, E-28
- unaligned load-store, E-28
- VAX floating-point formats, E-29
ALU control, 259–261. See also
- Arithmetic logic unit (ALU)
- bits, 260
- logic, D-6
- mapping to gates, D-4–7
- truth tables, D-5
ALU control block, 263
- defined, D-4
- generating ALU control bits, D-6
ALUOp, 260, D-6
- bits, 260, 261
- control signal, 263
Amazon Web Services (AWS), 425
AMD Opteron X4 (Barcelona), 543, 544
AMD64, 151, 224, OL2.21-6
Amdahl’s law, 401, 503
- corollary, 49
- defined, 49
- fallacy, 556
- and (AND), 64
AND gates, B-12, D-7
AND operation, 88
AND operation, A-52, B-6
andi (And Immediate), 64
Annual failure rate (AFR), 418
- versus MTTF of disks, 419–420
Antidependence, 338
Antifuse, B-78
Apple computer, OL1.12-7
Apple iPad 2 A1395, 20
logic board of, 20
processor integrated circuit of, 21
Application binary interface (ABI), 22
Application programming interfaces (APIs)
defined, C-4
graphics, C-14
Architectural registers, 347
Arithmetic, 176–236
addition, 178–182
addition and subtraction, 178–182
division, 189–195
fallacies and pitfalls, 229–232
floating-point, 196–222
historical perspective, 236
multiplication, 183–188
parallelism and, 222–223
Streaming SIMD Extensions and advanced vector extensions in x86, 224–225
subtraction, 178–182
subword parallelism, 222–223
subword parallelism and matrix multiply, 225–228
Arithmetic instructions. See also Instructions
desktop RISC, E-11
embedded RISC, E-14
logical, 251
MIPS, A-51–57
operands, 66–73
Arithmetic intensity, 541
Arithmetic logic unit (ALU). See also ALU control; Control units
1-bit, B-26–29
32-bit, B-29–38
before forwarding, 309
branch datapath, 254
hardware, 180
memory-reference instruction use, 245
for register values, 252
R-format operations, 253
signed-immediate input, 312
ARM Cortex-A8, 244, 345–346
address translation for, 471
caches in, 472
data cache miss rates for, 474
memory hierarchies of, 471–475
performance of, 473–475
specification, 345
TLB hardware for, 471
ARM instructions, 145–147
12-bit immediate field, 148
addressing modes, 145
block loads and stores, 149
brief history, OL2.21-5
calculations, 145–146
compare and conditional branch,
147–148
collection field, 324
data transfer, 146
features, 148–149
formats, 148
logical, 149
MIPS similarities, 146
register-register, 146
unique, E-36–37
ARMv7, 62
ARMv8, 158–159
ARPANET, OL1.12-10
Arrays, 415
logic elements, B-18–19
multiple dimension, 218
pointers versus, 141–145
procedures for setting to zero, 142
ASCII
binary numbers versus, 107
character representation, 106
defined, 106
symbols, 109
Assembler directives, A-5
Assemblers, 124–126, A-10–17
conditional code assembly, A-17
defined, 14, A-4
function, 125, A-10
macros, A-4, A-15–17
microcode, D-30
number acceptance, 125
object file, 125
pseudoinstructions, A-17
relocation information, A-13, A-14
speed, A-13
symbol table, A-12
Assembly language, 15
defined, 14, 123
drawbacks, A-9–10
floating-point, 212
high-level languages versus, A-12
illustrated, 15
MIPS, 64, 84, A-45–80
production of, A-8–9
programs, 123
translating into machine language, 84
when to use, A-7–9
Asserted signals, 250, B-4
Associativity
in caches, 405
degree, increasing, 404, 455
increasing, 409
set, tag size versus, 409
Atomic compare and swap, 123
Atomic exchange, 121
Atomic fetch-and-increment, 123
Atomic memory operation, C-21
Attribute interpolation, C-43–44
Automobiles, computer application in, 4
Average memory access time (AMAT), 402
calculating, 403
Backpatching, A-13
Bandwidth, 30–31
bisection, 532
external to DRAM, 398
memory, 380–381, 398
network, 535
Barrier synchronization, C-18
defined, C-20
for thread communication, C-34
Base addressing, 69, 116
Base registers, 69
Basic block, 93
Benchmarks, 538–540
defined, 46
Linpack, 538, OL3.11-4
multicores, 522–529
multiprocessor, 538–540
NAS parallel, 540
parallel, 539
PARSEC suite, 540
SPEC CPU, 46–48
SPEC power, 48–49
SPECrate, 538–539
Stream, 548
beq (Branch On Equal), 64
bge (Branch Greater Than or Equal), 125
bgt (Branch Greater Than), 125
Biased notation, 79, 200
Big-endian byte order, 70, A-43
Binary numbers, 81–82
ASCII versus, 107
conversion to decimal numbers, 76
defined, 73
Bisection bandwidth, 532
Bit maps
defined, 18, 73
goal, 18
storing, 18
Bit-Interleaved Parity (RAID 3), OL5.11-5
Bits
ALUOp, 260, 261
defined, 14
dirty, 437
guard, 220
patterns, 220–221
reference, 435
rounding, 220
sign, 75
state, D-8
sticky, 220
valid, 383
ble (Branch Less Than or Equal), 125
Blocking assignment, B-24
Blocking factor, 414
Block-Interleaved Parity (RAID 4), OL5.11-5–5.11-6
Blocks
combinational, B-4
defined, 376
finding, 456
flexible placement, 402–404
least recently used (LRU), 409
loads/stores, 149
locating in cache, 407–408
miss rate and, 391
multiword, mapping addresses to, 390
placement locations, 455–456
placement strategies, 404
replacement selection, 409
replacement strategies, 457
spatial locality exploitation, 391
state, B-4
valid data, 386
blt (Branch Less Than), 125
bne (Branch On Not Equal), 64
Bonding, 28
Boolean algebra, B-6
Bounds check shortcut, 95
Branch datapath
ALU, 254
operations, 254
Branch delay slots
defined, 322
scheduling, 323
Branch equal, 318
Branch instructions, A-59–63
jump instruction versus, 270
list of, A-60–63
pipeline impact, 317
Branch not taken
assumption, 318
defined, 254
Branch prediction
as control hazard solution, 284
buffers, 321, 322
defined, 283
dynamic, 284, 321–323
static, 335
Branch predictors
accuracy, 322
correlation, 324
information from, 324
tournament, 324
Branch taken
cost reduction, 318
defined, 254
Branch target
addresses, 254
buffers, 324
Branches. See also Conditional branches
addressing in, 113–116
compiler creation, 91
condition, 255
decision, moving up, 318
delayed, 96, 255, 284, 318–319, 322, 324
ending, 93
execution in ID stage, 319
pipelined, 318
target address, 318
unconditional, 91
Branch-on-equal instruction, 268
Bubble Sort, 140
Bubbles, 314
Bus-based coherent multiprocessors, OL6.15-7
Buses, B-19
Bytes
addressing, 70
order, 70, A-43

C
C.mmp, OL6.15-4
C language
assignment, compiling into MIPS, 65–66
compiling, 145, OL2.15-2–2.15-3
compiling assignment with registers, 67–68
compiling while loops in, 92
sort algorithms, 141
translation hierarchy, 124
translation to MIPS assembly language, 65
variables, 102
C++ language, OL2.15-27, OL2.21-8
Cache blocking and matrix multiply, 475–476
Cache coherence, 466–470
coherence, 466
consistency, 466
enforcement schemes, 467–468
implementation techniques, OL5.12-11–5.12-12
migration, 467
problem, 466, 467, 470
protocol example, OL5.12-12–5.12-16
protocols, 468
replication, 468
snooping protocol, 468–469
snoopy, OL5.12-17
state diagram, OL5.12-16
Cache coherency protocol, OL5.12-12–5.12-16
finite-state transition diagram, OL5.12-15
functioning, OL5.12-14
mechanism, OL5.12-14
state diagram, OL5.12-16
states, OL5.12-13
write-back cache, OL5.12-15
Cache controllers, 470
coherent cache implementation techniques, OL5.12-11–5.12-12
implementing, OL5.12-2
snoopy cache coherence, OL5.12-17
SystemVerilog, OL5.12-2
Cache hits, 443
Cache misses
block replacement on, 457
capacity, 459
Cache misses (Continued)
compulsory, 459
conflict, 459
defined, 392
direct-mapped cache, 404
fully associative cache, 406
handling, 392–393
memory-stall clock cycles, 399
reducing with flexible block placement, 402–404
set-associative cache, 405
steps, 393
in write-through cache, 393

Cache performance, 398–417
calculating, 400
hit time and, 401–402
impact on processor performance, 400

Cache-aware instructions, 482
Caches, 383–398. See also Blocks
accessing, 386–389
in ARM cortex-A8, 472
associativity in, 405–406
bits in, 390
bits needed for, 390
contents illustration, 387
defined, 21, 383–384
direct-mapped, 384, 385, 390, 402
empty, 386–387
FSM for controlling, 461–462
fully associative, 403
GPU, C-38
inconsistent, 393
index, 388
in Intel Core i7, 472
Intrinsity FastMATH example, 395–398
locating blocks in, 407–408
locations, 385
multilevel, 398, 410
nonblocking, 472
physically addressed, 443
physically indexed, 443
physically tagged, 443
primary, 410, 417
secondary, 410, 417
set-associative, 403
simulating, 478
split, 397
summary, 397–398
tag field, 388
tags, OL5.12-3, OL5.12-11
virtual memory and TLB integration, 440–441
virtually addressed, 443
virtually indexed, 443
virtually tagged, 443
write-back, 394, 395, 458
write-through, 393, 395, 457
writes, 393–395
Callee, 98, 99
Callee-saved register, A-23
Caller, 98
Caller-saved register, A-23
Capabilities, OL5.17-8
Capacity misses, 459
Carry lookahead, B-38–47
4-bit ALUs using, B-45
adder, B-39
fast, with first level of abstraction, B-39–40
fast, with “infinite” hardware, B-38–39
fast, with second level of abstraction, B-40–46
plumbing analogy, B-42, B-43
ripple carry speed versus, B-46
summary, B-46–47
Carry save adders, 188
Cause register
defined, 327
fields, A-34, A-35
OLC 6600, OL1.12-7, OL4.16-3
Cell phones, 7
Central processor unit (CPU). See also Processors
classic performance equation, 36–40
coprocessor 0, A-33–34
defined, 19
execution time, 32, 33–34
performance, 33–35
system, time, 32
time, 399
time measurements, 33–34
user, time, 32
Cg pixel shader program, C-15–17
Characters
ASCII representation, 106
in Java, 109–111
Chips, 19, 25, 26
manufacturing process, 26
Classes
defined, OL2.15-15
packages, OL2.15-21
Clock cycles
defined, 33
memory-stall, 399
number of registers and, 67
worst-case delay and, 272
Clock cycles per instruction (CPI), 35, 282
one level of caching, 410
two levels of caching, 410
Clock rate
defined, 33
frequency switched as function of, 41
power and, 40
Clocking methodology, 249–251, B-48
edge-triggered, 249, B-48, B-73
level-sensitive, B-74, B-75–76
for predictability, 249
Clocks, B-48–50
edge, B-48, B-50
in edge-triggered design, B-73
skew, B-74
specification, B-57
synchronous system, B-48–49
Cloud computing, 533
defined, 7
Cluster networking, 537–538, OL6.9-12
Clusters, OL6.15-8–6.15-9
defined, 30, 500, OL6.15-8
isolation, 530
orrganization, 499
scientific computing on, OL6.15-8
Cm*, OL6.15-4
CMOS (complementary metal oxide semiconductor), 41
Coarse-grained multithreading, 514
Cobol, OL2.21-7
Code generation, OL2.15-13
Code motion, OL2.15-7
Cold-start miss, 459
Collision misses, 459
Column major order, 413
Combinational blocks, B-4
Combinational control units, D-4–8
Combinational elements, 248
Combinational logic, 249, B-3, B-9–20
arrays, B-18–19
decoders, B-9
defined, B-5
don’t cares, B-17–18
multiplexors, B-10
ROMs, B-14–16
two-level, B-11–14
Verilog, B-23–26
Commercial computer development, OL1.12-4–1.12-10
Commit units
buffer, 339–340
defined, 339–340
in update control, 343
Common case fast, 11
Common subexpression elimination, OL2.15-6
Communication, 23–24
overhead, reducing, 44–45
thread, C-34
Compact code, OL2.21-4
Comparison instructions, A-57–59
floating-point, A-74–75
list of, A-57–59
Comparisons, 93
constant operands in, 93
signed versus unsigned, 94–95
Compilers, 123–124
branch creation, 92
brief history, OL2.21-9
conservative, OL2.15-6
deﬁned, 14
front end, OL2.15-3
function, 14, 123–124, A-5–6
high-level optimizations, OL2.15-4
ILP exploitation, OL4.16-5
Just In Time (JIT), 132
machine language production, A-8–9, A-10
optimization, 141, OL2.21-9
speculation, 333–334
structure, OL2.15-2
Compiling
C assignment statements, 65–66
C language, 92–93, 145, OL2.15–2.15-3
floating-point programs, 214–217
if-then-else, 91
in Java, OL2.15-19
procedures, 98, 101–102
recursive procedures, 101–102
while loops, 92–93
Compressed sparse row (CSR) matrix, C-55, C-56
Compulsory misses, 459
Computer architects, 11–12
abstraction to simplify design, 11
common case fast, 11
dependability via redundancy, 12
hierarchy of memories, 12
Moore’s law, 11
parallelism, 12
pipelining, 12
prediction, 12
Computers
application classes, 5–6
applications, 4
arithmetic for, 176–236
characteristics, OL1.12-12
commercial development, OL1.12–1.12-10
component organization, 17
components, 17, 177
design measure, 53
desktop, 5
embedded, 5, A-7
ﬁrst, OL1.12–2–1.12-4
in information revolution, 4
instruction representation, 80–87
performance measurement, OL1.12-10
PostPC Era, 6–7
principles, 86
servers, 5
Condition ﬁeld, 324
Conditional branches
ARM, 147–148
changing program counter with, 324
compiling if-then-else into, 91
deﬁned, 90
desktop RISC, E-16
embedded RISC, E-16
implementation, 96
in loops, 115
PA-RISC, E-34, E-35
PC-relative addressing, 114
RISC, E-10–16
SPARC, E-10–12
Conditional move instructions, 324
Conflict misses, 459
Constant memory, C-40
Constant operands, 72–73
in comparisons, 93
frequent occurrence, 72
Constant-manipulating instructions, A-57
Content Addressable Memory (CAM), 408
Context switch, 446
Control
ALU, 259–261
challenge, 325–326
ﬁnishing, 269–270
forwarding, 307
FSM, D-8–21
implementation, optimizing, D-27–28
for jump instruction, 270
mapping to hardware, D-2–32
memory, D-26
organizing, to reduce logic, D-31–32
pipelined, 300–303
Control flow graphs, OL2.15–9–2.15-10
illustrated examples, OL2.15-9, OL2.15-10
Control functions
ALU, mapping to gates, D-4–7
defining, 264
PLA, implementation, D-7, D-20–21
ROM, encoding, D-18–19
for single-cycle implementation, 269
Control hazards, 281–282, 316–325
branch delay reduction, 318–319
branch not taken assumption, 318
branch prediction as solution, 284
delayed decision approach, 284
dynamic branch prediction,
321–323
logic implementation in Verilog, OL4.13–8
pipeline stalls as solution, 282
pipeline summary, 324
simplicity, 317
solutions, 282
static multiple-issue processors and,
335–336
Control lines
asserted, 264
in datapath, 263
execution/address calculation, 300
ﬁnal three stages, 303
instruction decode/register ﬁle read, 300
instruction fetch, 300
memory access, 302
setting of, 264
values, 300
write-back, 302
Control signals
ALUOp, 263
defined, 250
effect of, 264
multi-bit, 264
pipelined datapaths with, 300–303
truth tables, D-14
Control units, 247. See also Arithmetic logic unit (ALU) address select logic, D-24, D-25 combinational, implementing, D-4–8 with explicit counter, D-23 illustrated, 265 logic equations, D-11 main, designing, 261–264 as microcode, D-28 MIPS, D-10 next-state outputs, D-10, D-12–13 output, 259–261, D-10 Conversion instructions, A-75–76 Cooperative thread arrays (CTAs), C-30 Coprocessors, A-33–34 defined, 218 move instructions, A-71–72 Core MIPS instruction set, 236. See also MIPS abstract view, 246 desktop RISC, E-9–11 implementation, 244–248 implementation illustration, 247 overview, 245 subset, 244 Cores defined, 43 number per chip, 43 Correlation predictor, 324 Cosmic Cube, OL6.15-7 Count register, A-34 CPU, 9 Cray computers, OL3.11-5–3.11-6 Critical word first, 392 Crossbar networks, 535 CTSS (Compatible Time-Sharing System), OL5.18-9 CUDA programming environment, 523, C-5 barrier synchronization, C-18, C-34 development, C-17, C-18 hierarchy of thread groups, C-18 kernels, C-19, C-24 key abstractions, C-18 paradigm, C-19–23 parallel plus-scan template, C-61 per-block shared memory, C-58 plus-reduction implementation, C-63 programs, C-6, C-24 scalable parallel programming with, C-17–23 shared memories, C-18 threads, C-36 Cyclic redundancy check, 423 Cylinder, 381 D
D flip-flops, B-51, B-53 D latches, B-51, B-52 Data bits, 421 Data flow analysis, OL2.15-11 Data hazards, 278, 303–316. See also Hazards forwarding, 278, 303–316 load-use, 280, 318 stalls and, 313–316 Data layout directives, A-14 Data movement instructions, A-70–73 Data parallel problem decomposition, C-17, C-18 Data race, 121 Data segment, A-13 Data selectors, 246 Data transfer instructions. See also Instructions defined, 68 load, 68 offset, 69 store, 71 Datacenters, 7 Data-level parallelism, 508 Datapath elements defined, 251 sharing, 256 Datapaths branch, 254 building, 251–259 control signal truth tables, D-14 control unit, 265 defined, 19 design, 251 exception handling, 329 for fetching instructions, 253 for hazard resolution via forwarding, 311 for jump instruction, 270 for memory instructions, 256 for MIPS architecture, 257 in operation for branch-on-equal instruction, 268 in operation for load instruction, 267 in operation for R-type instruction, 266 operation of, 264–269 pipelined, 286–303 for R-type instructions, 256, 264–265 single, creating, 256 single-cycle, 283 static two-issue, 336 Deasserted signals, 250, B-4 Debugging information, A-13 DEC PDP-8, OL2.21-3 Decimal numbers binary number conversion to, 76 defined, 73 Decision-making instructions, 90–96 Decoders, B-9 two-level, B-65 Decoding machine language, 118–120 Defect, 26 Delayed branches, 96. See also Branches as control hazard solution, 284 defined, 255 embedded RISCs and, E-23 for five-stage pipelines, 26, 323–324 reducing, 318–319 scheduling limitations, 323 Delayed decision, 284 DeMorgan’s theorems, B-11 Denormalized numbers, 222 Dependability via redundancy, 12 Dependable memory hierarchy, 418–423 failure, defining, 418 Dependences between pipeline registers, 308 between pipeline registers and ALU inputs, 308 bubble insertion and, 314 detection, 306–308 name, 338 sequence, 304 Design compromises and, 161 datapath, 251 digital, 354 logic, 248–251, B-1–79 main control unit, 261–264 memory hierarchy, challenges, 460 pipelining instruction sets, 277 Desktop and server RISCs. See also Reduced instruction set computer (RISC) architectures
addressing modes, E-6
architecture summary, E-4
arithmetic/logical instructions, E-11
conditional branches, E-16
constant extension summary, E-9
control instructions, E-11
conventions equivalent to MIPS core, E-12
data transfer instructions, E-10
features added to, E-45
floating-point instructions, E-12
instruction formats, E-7
multimedia extensions, E-16–18
multimedia support, E-18
types of, E-3
Desktop computers, defined, 5
Device driver, OL6.9-5
DGEMM (Double precision General Matrix Multiply), 225, 352, 413, 553
cache blocked version of, 415
optimized C version of, 226, 227, 476
performance, 354, 416
Dicing, 27
Dies, 26, 26–27
Digital design pipeline, 354
Digital signal-processing (DSP) extensions, E-19
DIMMs (dual inline memory modules), OL5.17-5
Direct Data IO (DDIO), OL6.9-6
Direct memory access (DMA), OL6.9-4
Direct3D, C-13
Direct-mapped caches. See also Caches
address portions, 407
choice of, 456
defined, 384, 402
illustrated, 385
memory block location, 403
misses, 405
single comparator, 407
total number of bits, 390
Dirty bit, 437
Dirty pages, 437
Disk memory, 381–383
Displacement addressing, 116
Distributed Block-Interleaved Parity (RAID 5), OL5.11-6
div (Divide), A-52
div.d (FP Divide Double), A-76
div.s (FP Divide Single), A-76
Divide algorithm, 190
Dividend, 189
Division, 189–195
algorithm, 191
dividend, 189
divisor, 189
Divisor, 189
divu (Divide Unsigned), A-52. See also Arithmetic
faster, 194
floating-point, 211, A-76
hardware, 189–192
hardware, improved version, 192
instructions, A-52–53
in MIPS, 194
operands, 189
quotient, 189
remainder, 189
signed, 192–194
SRT, 194
Don't cares, B-17–18
example, B-17–18
term, 261
Double data rate (DDR), 379
Double Data Rate RAMs (DDRRAMs), 379–380, B-65
Double precision. See also Single precision
defined, 198
FMA, C-45–46
GPU, C-45–46, C-74
representation, 201
Double words, 152
Dual inline memory modules (DIMMs), 381
Dynamic branch prediction, 321–323. See also Control hazards
branch prediction buffer, 321
loops and, 321–323
Dynamic hardware predictors, 284
Dynamic multiple-issue processors, 333, 339–341. See also Multiple issue pipeline scheduling, 339–341
superscalar, 339
Dynamic pipeline scheduling, 339–341
commit unit, 339–340
concept, 339–340
hardware-based speculation, 341
primary units, 340
reorder buffer, 343
reservation station, 339–340
Dynamic random access memory (DRAM), 378, 379–381, B-63–65
bandwidth external to, 398
cost, 23
defined, 19, B-63
DIMM, OL5.17-5
Double Date Rate (DDR), 379–380
early board, OL5.17-4
GPU, C-37–38
growth of capacity, 25
history, OL5.17-2
internal organization of, 380
pass transistor, B-63
SIMM, OL5.17-5, OL5.17-6
growth of capacity, 25
size, 398
speed, 23
synchronous (SDRAM), 379–380, B-60, B-65
two-level decoder, B-65
Dynamically linked libraries (DLLs), 129–131
defined, 129
lazy procedure linkage version, 130
Early restart, 392
Edge-triggered clocking methodology, 249, 250, B-48, B-73
advantage, B-49
clocks, B-73
drawbacks, B-74
illustrated, B-50
rising edge/falling edge, B-48
EDSAC (Electronic Delay Storage Automatic Calculator), OL1.12-3, OL5.17-2
Eispac, OL3.11-4
Electrically erasable programmable read-only memory (EEPROM), 381
Elements
combinational, 248
datapath, 251, 256
memory, B-50–58
state, 248, 250, 252, B-48, B-50
Embedded computers, 5
application requirements, 6
defined, A-7
design, 5
growth, OL1.12-12–1.12-13
Embedded Microprocessor Benchmark Consortium (EEMBC), OL1.12-12
Embedded RISCs. See also Reduced instruction set computer (RISC) architectures
addressing modes, E-6
architecture summary, E-4
arithmetic/logical instructions, E-14
conditional branches, E-16
constant extension summary, E-9
control instructions, E-15
data transfer instructions, E-13
delayed branch and, E-23
DSP extensions, E-19
general purpose registers, E-5
instruction conventions, E-15
instruction formats, E-8
multiply-accumulate approaches, E-19
types of, E-4
Encoding
defined, D-31
floating-point instruction, 213
MIPS instruction, 83, 119, A-49
ROM control function, D-18–19
ROM logic function, B-15
x86 instruction, 155–156
ENIAC (Electronic Numerical Integrator and Calculator), OL1.12-2, OL1.12-3, OL5.17-2
EPIC, OL4.16-5
Error correction, B-65–67
Error Detecting and Correcting Code (RAID 2), OL5.11-5
Error detection, B-66
Error detection code, 420
Ethernet, 23
EX stage
load instructions, 292
overflow exception detection, 328
store instructions, 294
Exabyte, 6
Exception enable, 447
Exception handlers, A-36–38
defined, A-35
return from, A-38
Exception program counters (EPCs), 326
address capture, 331
copying, 181
defined, 181, 327
in restart determination, 326–327
transferring, 182
Exceptions, 325–332, A-33–38
association, 331–332
datapath with controls for handling, 329
defined, 180, 326
detecting, 326
event types and, 326
imprecise, 331–332
instructions, A-80
interrupts versus, 325–326
in MIPS architecture, 326–327
overflow, 329
PC, 445, 446–447
pipelined computer example, 328
in pipelined implementation, 327–332
precise, 332
reasons for, 326–327
result due to overflow in add instruction, 330
saving/restoring stage on, 450
Exclusive OR (XOR) instructions, A-57
Executable files, A-4
defined, 126
linker production, A-19
Execute or address calculation stage, 292
Execute/address calculation
control line, 300
load instruction, 292
store instruction, 292
Execution time
as valid performance measure, 51
CPU, 32, 33–34
pipelining and, 286
Explicit counters, D-23, D-26
Exponents, 197–198
External labels, A-10

F
Facilities, A-14–17
Failures, synchronizer, B-77
Fallacies. See also Pitfalls
add immediate unsigned, 227
Amdahl's law, 556
arithmetic, 229–232
assembly language for performance, 159–160
commercial binary compatibility
importance, 160
defined, 49
GPUs, C-72–74, C-75
low utilization uses little power, 50
peak performance, 556
pipelining, 355–356
powerful instructions mean higher performance, 159
right shift, 229
False sharing, 469
Fast carry
with “infinite” hardware, B-38–39
with first level of abstraction, B-39–40
with second level of abstraction, B-40–46
Fast Fourier Transforms (FFT), C-53
Fault avoidance, 419
Fault forecasting, 419
Fault tolerance, 419
Fermi architecture, 523, 552
Field programmable devices (FPDs), B-78
Field programmable gate arrays (FPGAs), B-78
Fields
Cause register, A-34, A-35
defined, 82
format, D-31
MIPS, 82–83
names, 82
Status register, A-34, A-35
Files, register, 252, 257, B-50, B-54–56
Fine-grained multithreading, 514
Finite-state machines (FSMs), 451–466, B-67–72
control, D-8–22
controllers, 464
for multicycle control, D-9
for simple cache controller, 464–466
implementation, 463, B-70
Mealy, 463
Moore, 463
next-state function, 463, B-67
output function, B-67, B-69
state assignment, B-70
state register implementation, B-71
style of, 463
synchronous, B-67
SystemVerilog, OL5.12-7
traffic light example, B-68–70
Flash memory, 381
characteristics, 23
defined, 23
Flat address space, 479
Flip-flops
D flip-flops, B-51, B-53
defined, B-51
Floating point, 196–222, 224
assembly language, 212
backward step, OL3.11-4–3.11-5
binary to decimal conversion, 202
branch, 211
challenges, 232–233
diversity versus portability, OL3.11-3–3.11-4
division, 211
first dispute, OL3.11-2–3.11-3
form, 197
fused multiply add, 220
history, OL3.11-3
IEEE 754 standard, 198, 199
instruction encoding, 213
intermediate calculations, 218
machine language, 212
MIPS instruction frequency for, 236
MIPS instructions, 211–213
operands, 212
overflow, 198
packed format, 224
precision, 230
procedure with two-dimensional matrices, 215–217
programs, compiling, 214–217
registers, 217
representation, 197–202
rounding, 218–219
sign and magnitude, 197
SSE2 architecture, 224–225
subtraction, 211
underflow, 198
units, 219
in x86, 224
Floating vectors, OL3.11-3
Floating-point addition, 203–206
arithmetic unit block diagram, 207
binary, 204
illustrated, 205
instructions, 211, A-73–74
steps, 203–204
Floating-point arithmetic (GPUs), C-41–46
basic, C-42
double precision, C-45–46, C-74
performance, C-44
specialized, C-42–44
supported formats, C-42
texture operations, C-44
Floating-point instructions, A-73–80
absolute value, A-73
addition, A-73–74
comparison, A-74–75
conversion, A-75–76
desktop RISC, E-12
division, A-76
load, A-76–77
move, A-77–78
multiplication, A-78
negation, A-78–79
SPARC, E-31
square root, A-79
store, A-79
subtraction, A-79–80
truncation, A-80
Floating-point multiplication, 206–210
binary, 210–211
illustrated, 209
instructions, 211
significands, 206
steps, 206–210
Flow-sensitive information, OL2.15-15
Flushing instructions, 318, 319
defined, 319
exceptions and, 331
For loops, 141, OL2.15-26
inner, OL2.15-24
SIMD and, OL6.15-2
Global common subexpression elimination, OL2.15-6
Global memory, C-21, C-39
Global miss rates, 416
Global optimization, OL2.15-5
code, OL2.15-7
implementing, OL2.15-8–2.15-11
Global pointers, 102
GPU computing. See also Graphics processing units (GPUs)
defined, C-5
visual applications, C-6–7
GPU system architectures, C-7–12
graphics logical pipeline, C-10
heterogeneous, C-7–9
implications for, C-24
interfaces and drivers, C-9
unified, C-10–12
Graph coloring, OL2.15-12
Graphics displays
- computer hardware support, 18
- LCD, 18

Graphics logical pipeline, C-10

Graphics processing units (GPUs), 522–529. See also GPU computing as accelerators, 522
- attribute interpolation, C-43–44
- defined, 46, 506, C-3
- evolution, C-5
- fallacies and pitfalls, C-72–75
- floating-point arithmetic, C-17, C-41–46, C-74
- GeForce 8-series generation, C-5
- general computation, C-73–74
- General Purpose (GPGPUs), C-5
- graphics mode, C-6
- graphics trends, C-4
- history, C-3–4
- logical graphics pipeline, C-13–14
- mapping applications to, C-55–72
- memory, 523
- multilevel caches and, 522
- N-body applications, C-65–72
- NVIDIA architecture, 523–526
- parallel memory system, C-36–41
- parallelism, 523, C-76
- performance doubling, C-4
- perspective, 527–529
- programming, C-12–24
- programming interfaces to, C-17
- real-time graphics, C-13
- summary, C-76

Graphics shader programs, C-14–15

Gresham’s Law, 236, OL3.11-2

Grid computing, 533

Grids, C-19

GTX 280, 548–553

Guard digits
- defined, 218
- rounding with, 219

H

Half precision, C-42

Halfwords, 110

Hamming, Richard, 420

Hamming distance, 420

Hamming Error Correction Code (ECC), 420–421
- calculating, 420–421
- defined, 376
- Hit under miss, 472
- Hold time, B-54
- Horizontal microcode, D-32
- Hot-swapping, OL5.11-7
- Human genome project, 4

I

I/O, A-38–40, OL6.9-2, OL6.9-3
- memory-mapped, A-38
- on system performance, OL5.11-2

I/O benchmarks. See Benchmarks

IBM 360/85, OL5.17-7

IBM 701, OL1.12-5

IBM 7030, OL4.16-2

IBM ALOG, OL3.11-7

IBM Blue Gene, OL6.15-9–6.15-10

IBM Personal Computer, OL1.12-7, OL2.21-6

IBM System/360 computers, OL1.12-6, OL3.11-6, OL4.16-2

IBM z/VM, OL5.17-8

ID stage
- branch execution in, 319
- load instructions, 292
- store instruction in, 291

IEEE 754 floating-point standard, 198, 199, OL3.11-8–3.11-10. See also Floating point
- first chips, OL3.11-8–3.11-9
- in GPU arithmetic, C-42–43
- implementation, OL3.11-10
- rounding modes, 219
- today, OL3.11-10

If statements, 114

I-format, 83

If-then-else, 91

Immediate addressing, 116

Immediate instructions, 72

Imprecise interrupts, 331, OL4.16-4

Index-out-of-bounds check, 94–95

Induction variable elimination, OL2.15-7

Inheritance, OL2.15-15

In-order commit, 341

Input devices, 16

Inputs, 261

Instances, OL2.15-15

Instruction count, 36, 38

Instruction decode/register file read stage
control line, 300
load instruction, 289
store instruction, 294
Instruction execution illustrations,
OL4.13-16–4.13-17
clock cycle 9, OL4.13-24
clock cycles 1 and 2, OL4.13-21
clock cycles 3 and 4, OL4.13-22
clock cycles 5 and 6, OL4.13-23,
OL4.13-23
clock cycles 7 and 8, OL4.13-24
examples, OL4.13-20–4.13-25
forwarding, OL4.13-26–4.13-31
no hazard, OL4.13-17
pipelines with stalls and forwarding,
OL4.13-26, OL4.13-20
Instruction fetch stage
control line, 300
load instruction, 289
store instruction, 294
Instruction formats, 157
ARM, 148
defined, 81
desktop/server RISC architectures, E-7
eMBEDDED RISC architectures, E-8
I-type, 83
J-type, 113
jump instruction, 270
MIPS, 148
R-type, 83, 261
x86, 157
Instruction latency, 356
Instruction mix, 39, OL1.12-10
Instruction set architecture
ARM, 145–147
branch address calculation, 254
defined, 22, 52
history, 163
maintaining, 52
protection and, 427
thread, C-31–34
virtual machine support, 426–427
Instruction sets, 235, C-49
ARM, 324
design for pipelining, 277
MIPS, 62, 161, 234
MIPS-32, 235
Pseudo MIPS, 233
x86 growth, 161
Instruction-level parallelism (ILP), 354.
See also Parallelism
compiler exploitation, OL4.16-5–4.16-6
defined, 43, 333
expansion, increasing, 343
and matrix multiply, 351–354
Instructions, 60–164, E-25–27, E-40–42.
See also Arithmetic instructions;
MIPS; Operands
add immediate, 72
addition, 180, A-51
Alpha, E-27–29
arithmetic-logical, 251, A-51–57
ARM, 145–147, E-36–37
assembly, 66
basic block, 93
branch, A-59–63
cache-aware, 482
comparison, A-57–59
conditional branch, 90
conditional move, 324
constant-manipulating, A-57
conversion, A-75–76
core, 233
data movement, A-70–73
data transfer, 68
decision-making, 90–96
defined, 14, 62
desktop RISC conventions, E-12
division, A-52–53
electronic signals, 80
embedded RISC conventions, E-15
encoding, 83
exception and interrupt, A-80
exclusive OR, A-57
fetching, 253
fields, 80
floating-point (x86), 224
flushing, 318, 319, 331
immediate, 72
introduction to, 62–63
jump, 95, 97, A-63–64
left-to-right flow, 287–288
load, 68, A-66–68
load linked, 122
logical operations, 87–89
M32R, E-40
memory access, C-33–34
memory-reference, 245
multiplication, 188, A-53–54
negation, A-54
nop, 314
PA-RISC, E-34–36
performance, 35–36
pipeline sequence, 313
PowerPC, E-12–13, E-32–34
PTX, C-31, C-32
remainder, A-55
representation in computer, 80–87
restartable, 450
resuming, 450
R-type, 252
shift, A-55–56
SPARC, E-29–32
store, 71, A-68–70
store conditional, 122
subtraction, 180, A-56–57
SuperH, E-39–40
thread, C-30–31
Thumb, E-38
trap, A-64–66
vector, 510
as words, 62
x86, 149–155
Instructions per clock cycle (IPC), 333
Integrated circuits (ICs), 19. See also
specific chips
cost, 27
defined, 25
manufacturing process, 26
very large-scale (VLSIs), 25
Intel Core i7, 46–49, 244, 501, 548–553
address translation for, 471
architectural registers, 347
caches in, 472
memory hierarchies of, 471–475
microarchitecture, 338
performance of, 473
SPEC CPU benchmark, 46–48
SPEC power benchmark, 48–49
TLB hardware for, 471
Intel Core i7 920, 346–349
microarchitecture, 347
Intel Core i7 960
benchmarking and rooflines of,
548–553
Intel Core i7 Pipelines, 344, 346–349
memory components, 348
performance, 349–351
program performance, 351
specification, 345
Intel IA-64 architecture, OL2.21-3
Intel Paragon, OL6.15-8
Intel Threading Building Blocks, C-60
Intel x86 microprocessors
 clock rate and power for, 40
Interference graphs, OL2.15-12
Interleaving, 398
Interprocedural analysis, OL2.15-14
Interrupt enable, 447
Interrupt handlers, A-33
Interrupt-driven I/O, OL6.9-4
Interrupts
 defined, 180, 326
 event types and, 326
 exceptions versus, 325–326
 imprecise, 331, OL4.16-4
 instructions, A-80
 precise, 332
 vectored, 327
Intrinsity FastMATH processor, 395–398
 caches, 396
 data miss rates, 397, 407
 read processing, 442
 TLB, 440
 write-through processing, 442
Inverted page tables, 436
Issue packets, 334
Java
 bytecode, 131
 bytecode architecture, OL2.15-17
 characters in, 109–111
 compiling in, OL2.15-19–2.15-20
 goals, 131
 interpreting, 131, 145, OL2.15-15–2.15-16
 keywords, OL2.15-21
 method invocation in, OL2.15-21
 pointers, OL2.15-26
 primitive types, OL2.15-26
 programs, starting, 131–132
 reference types, OL2.15-26
 sort algorithms, 141
 strings in, 109–111
 translation hierarchy, 131
 while loop compilation in, OL2.15-18–2.15-19
Java Virtual Machine (JVM), 145, OL2.15-16
jr (Jump Register), 64
J-type instruction format, 113
Jump instructions, 254, E-26
 branch instruction versus, 270
 control and datapath for, 271
 implementing, 270
 instruction format, 270
 list of, A-63–64
Just In Time (JIT) compilers, 132, 560
Karnaugh maps, B-18
Kernel mode, 444
Kernels
 CUDA, C-19, C-24
 defined, C-19
Kilobyte, 6
Labels
 global, A-10, A-11
 local, A-11
LAPACK, 230
Large-scale multiprocessors, OL6.15-7, OL6.15-9–6.15-10
Latches
 D latch, B-51, B-52
 defined, B-51
Latency
 instruction, 356
 memory, C-74–75
 pipeline, 286
 use, 336–337
lbu (Load Byte Unsigned), 64
Leaf procedures. See also Procedures
defined, 100
example, 109
Least recently used (LRU)
as block replacement strategy, 457
defined, 409
pages, 434
Least significant bits, B-32
defined, 74
SPARC, E-31
Left-to-right instruction flow, 287–288
Level-sensitive clocking, B-74, B-75–76
defined, B-74
two-phase, B-75
Lhu (Load Halfword Unsigned), 64
li (Load Immediate), 162
Link, OL6.9-2
Linkers, 126–129, A-18–19
defined, 126, A-4
executable files, 126, A-19
function illustration, A-19
steps, 126
using, 126–129
Linking object files, 126–129
Linpack, 538, OL3.11-4
Liquid crystal displays (LCDs), 18
LISP, SPARC support, E-30
Little-endian byte order, A-43
Live range, OL2.15-11
Livermore Loops, OL1.12-11
ll (Load Linked), 64
Load balancing, 505–506
Load instructions. See also Store
 instructions
 access, C-41
 base register, 262
 block, 149
 compiling with, 71
 datapath in operation for, 267
defined, 68
details, A-66–68
 EX stage, 292
 floating-point, A-76–77
 halfword unsigned, 110
 ID stage, 291
 IF stage, 291
 linked, 122, 123
 list of, A-66–68
 load byte unsigned, 76
 load half, 110
 load upper immediate, 112, 113
 MEM stage, 293
 pipelined datapath in, 296
 signed, 76
 unit for implementing, 255
 unsigned, 76
 WB stage, 293
Load word, 68, 71
Loaders, 129
Loading, A-19–20
Load-store architectures, OL2.21-3
Load-use data hazard, 280, 318
Load-use stalls, 318
Local area networks (LANs), 24. See also Networks
Index

Local labels, A-11
Local memory, C-21, C-40
Local miss rates, 416
Local optimization, OL2.15-5.

See also Optimization implementing, OL2.15-8
Locality
 principle, 374
 spatial, 374, 377
 temporal, 374, 377
Lock synchronization, 121
Locks, 518
Logic
 address select, D-24, D-25
 ALU control, D-6
 combinational, 250, B-5, B-9–20
 components, 249
 control unit equations, D-11
 design, 248–251, B-1–79
 equations, B-7
 minimization, B-18
 programmable array (PAL), B-78
 sequential, B-5, B-56–58
 two-level, B-11–14
Logical operations, 87–89
 AND, 88, A-52
 ARM, 149
 desktop RISC, E-11
 embedded RISC, E-14
 MIPS, A-51–57
 NOR, 89, A-54
 NOT; 89, A-55
 OR, 89, A-55
 shifts, 87
Long instruction word (LIW), OL4.16-5
Lookup tables (LUTs), B-79
Loop unrolling
 defined, 338, OL2.15-4
 for multiple-issue pipelines, 338
 register renaming and, 338
Loops, 92–93
 conditional branches in, 114
 for, 141
 prediction and, 321–323
 test, 142, 143
 while, compiling, 92–93
lui (Load Upper Imm.), 64
lw (Load Word), 64
lwc1 (Load FP Single), A-73

M
M32R, E-15, E-40
Machine code, 81
Machine instructions, 81
Machine language, 15
 branch offset in, 115
 decoding, 118–120
 defined, 14, 81, A-3
 floating-point, 212
 illustrated, 15
 MIPS, 85
 SRAM, 21
 translating MIPS assembly language into, 84
Macros
 defined, A-4
 example, A-15–17
 use of, A-15
Main memory, 428. See also Memory
 defined, 23
 page tables, 437
 physical addresses, 428
Mapping applications, C-55–72
Mark computers, OL1.12-14
Matrix multiply, 225–228, 553–555
Mealy machine, 463–464, B-68, B-71, B-72
Mean time to failure (MTTF), 418
 improving, 419
 versus AFR of disks, 419–420
Media Access Control (MAC) address, OL6.9-7
Megabyte, 6
Memory
 addresses, 77
 affinity, 545
 atomic, C-21
 bandwidth, 380–381, 397
 cache, 21, 383–398, 398–417
 CAM, 408
 constant, C-40
 control, D-26
 defined, 19
 DRAM, 19, 379–380, B-63–65
 flash, 23
 global, C-21, C-39
 GPU, 523
 instructions, datapath for, 256
 layout, A-21
 local, C-21, C-40
 main, 23
 nonvolatile, 22
 operands, 68–69
 parallel system, C-36–41
 read-only (ROM), B-14–16
 SDRAM, 379–380
 secondary, 23
 shared, C-21, C-39–40
 spaces, C-39
 SRAM, B-58–62
 stalls, 400
 technologies for building, 24–28
 texture, C-40
 usage, A-20–22
 virtual, 427–454
 volatile, 22
Memory access instructions, C-33–34
Memory access stage
 control line, 302
 load instruction, 292
 store instruction, 292
Memory bandwidth, 551, 557
Memory consistency model, 469
Memory elements, B-50–58
 clocked, B-51
 D flip-flop, B-51, B-53
 D latch, B-52
 DRAMs, B-63–67
 flip-flop, B-51
 hold time, B-54
 latch, B-51
 setup time, B-53, B-54
 SRAMs, B-58–62
 unclocked, B-51
Memory hierarchies, 545
 of ARM cortex-A8, 471–475
 block (or line), 376
 cache performance, 398–417
 caches, 383–417
 common framework, 454–461
 defined, 375
 design challenges, 461
 development, OL5.17-6–5.17-8
 exploiting, 372–498
 of Intel core i7, 471–475
 level pairs, 376
 multiple levels, 375
 overall operation of, 443–444
 parallelism and, 466–470, OL5.11-2
 pitfalls, 478–482
 program execution time and, 417
Memory hierarchies (Continued)
quantitative design parameters, 454
redundant arrays and inexpensive disks, 470
reliance on, 376
structure, 375
structure diagram, 378
variance, 417
virtual memory, 427–454
Memory rank, 381
Memory technologies, 378–383
disk memory, 381–383
DRAM technology, 378, 379–381
flash memory, 381
SRAM technology, 378, 379
Memory-mapped I/O, OL6.9-3
use of, A-38
Memory-stall clock cycles, 399
Message passing
defined, 529
multiprocessors, 529–534
Metastability, B-76
Methods
defined, OL2.15-5
invoking in Java, OL2.15-20–2.15-21
static, A-20
mfc0 (Move From Control), A-71
mhi (Move From Hi), A-71
mlo (Move From Lo), A-71
Microarchitectures, 347
Intel Core i7 920, 347
Microcode
assembler, D-30
central unit, D-28
defined, D-27
dispatch ROMs, D-30–31
horizontal, D-32
vertical, D-32
Microinstructions, D-31
Microprocessors
design shift, 501
multicore, 8, 43, 500–501
Microprograms
as abstract control representation, D-30
field translation, D-29
translating to hardware, D-28–32
Migration, 467
Million instructions per second (MIPS), 51
Minterms
defined, B-12, D-20
in PLA implementation, D-20
MIP-map, C-44
MIPS, 64, 84, A-45–80
addressing for 32-bit immediates, 116–118
addressing modes, A-45–47
arithmetic core, 233
arithmetic instructions, 63, A-51–57
ARM similarities, 146
assembler directive support, A-47–49
assembler syntax, A-47–49
assembly instruction, mapping, 80–81
branch instructions, A-59–63
comparison instructions, A-57–59
compiling C assignment statements into, 65
compiling complex C assignment into, 65–66
constant-manipulating instructions, A-57
control registers, 448
central unit, D-10
CPU, A-46
divide in, 194
exceptions in, 326–327
fields, 82–83
floating-point instructions, 211–213
FPU, A-46
instruction classes, 163
instruction encoding, 83, 119, A-49
instruction formats, 120, 148, A-49–51
instruction set, 62, 162, 234
jump instructions, A-63–66
logical instructions, A-51–57
machine language, 85
memory addresses, 70
memory allocation for program and data, 104
multiply in, 188
opcode map, A-50
operands, 64
Pseudo, 233, 235
register conventions, 105
static multiple issue with, 335–338
MIPS core
architecture, 195
arithmetic/logical instructions not in, E-21, E-23
common extensions to, E-20–25
control instructions not in, E-21
data transfer instructions not in, E-20, E-22
floating-point instructions not in, E-22
instruction set, 233, 244–248, E-9–10
MIPS-16
16-bit instruction set, E-41–42
immediate fields, E-41
instructions, E-40–42
MIPS core instruction changes, E-42
PC-relative addressing, E-41
MIPS-32 instruction set, 235
MIPS-64 instructions, E-25–27
conditional procedure call instructions, E-27
constant shift amount, E-25
jump/call not PC-relative, E-26
move to/from control registers, E-26
nonaligned data transfers, E-25
NOR, E-25
parallel single precision floating-point operations, E-27
reciprocal and reciprocal square root, E-27
SYSCALL, E-25
TLB instructions, E-26–27
Mirroring, OL5.11-5
Miss penalty
defined, 376
determination, 391–392
multilevel caches, reducing, 410
Miss rates
block size versus, 392
data cache, 455
defined, 376
global, 416
improvement, 391–392
Intrinsity FastMATH processor, 397
local, 416
miss sources, 460
split cache, 397
Miss under miss, 472
MMX (MultiMedia eXtension), 224
Modules, A-4
Moore machines, 463–464, B-68, B-71, B-72
Moore’s law, 11, 379, 522, OL6.9-2, C-72–73
Most significant bit
1-bit ALU for, B-33
defined, 74
move (Move), 139
Move instructions, A-70–73
 coprocessor, A-71–72
details, A-70–73
 floating-point, A-77–78
MS-DOS, OL5.17-11
mul.d (FP Multiply Double), A-78
mul.s (FP Multiply Single), A-78
mult (Multiply), A-53
Multicore, 517–521
Multicore multiprocessors, 8, 43
defined, 8, 500–501
MULTICS (Multiplexed Information
and Computing Service), OL5.17-9–5.17-10
Multilevel caches. See also Caches
 complications, 416
defined, 398, 416
 miss penalty, reducing, 410
 performance of, 410
 summary, 417–418
Multimedia extensions
desktop/server RISCs, E-16–18
 as SIMD extensions to instruction sets, OL6.15-4
 vector versus, 511–512
Multiple dimension arrays, 218
Multiple instruction multiple data (MIMD), 558
defined, 507, 508
first multiprocessor, OL6.15-14
Multiple instruction single data (MISD), 507
 Multiple issue, 332–339
 code scheduling, 337–338
dynamic, 333, 339–341
 issue packets, 334
loop unrolling and, 338
 processors, 332, 333
 static, 333, 334–339
throughput and, 342
Multiple processors, 553–555
Multiple-clock-cycle pipeline diagrams,
 296–297
 five instructions, 298
illustrated, 298
Multiplexors, B-10
 controls, 463
 in datapath, 263
defined, 246
 forwarding, control values, 310
 selector control, 256–257
two-input, B-10
Multiplicand, 183
Multiplication, 183–188. See also Arithmetic
 fast, hardware, 188
 faster, 187–188
 first algorithm, 185
 floating-point, 206–208, A-78
 hardware, 184–186
 instructions, 188, A-53–54
 in MIPS, 188
 multiplicand, 183
 multiplier, 183
 operands, 183
 product, 183
 sequential version, 184–186
 signed, 187
 Multiplier, 183
 Multiply algorithm, 186
 Multiply-add (MAD), C-42
Multithreaded multiprocessor
 architecture, C-25–36
 ISA, C-31–34
 massive multithreading, C-25–26
 multiprocessor, C-26–27
 multiprocessor comparison, C-35–36
 SIMT, C-27–30
 special function units (SFUs), C-35
 streaming processor (SP), C-34
 thread instructions, C-30–31
 threads/thread blocks management, C-30
 Multithreading, C-25–26
 coarse-grained, 514
defined, 506
fine-grained, 514
hardware, 514–517
 simultaneous (SMT), 515–517
mulu (Multiply Unsigned), A-54
Must-information, OL2.15-5
Mutual exclusion, 121

N
Name dependence, 338
NAND gates, B-8
NAS (NASA Advanced Supercomputing), 540
N-body
 all-pairs algorithm, C-65
 GPU simulation, C-71
 mathematics, C-65–67
 multiple threads per body, C-68–69
 optimization, C-67
 performance comparison, C-69–70
 results, C-70–72
 shared memory use, C-67–68
Negation instructions, A-54, A-78–79
Negation shortcut, 76
Nested procedures, 100–102
 compiling recursive procedure
 showing, 101–102
NetFPGA 10-Gigabit Ethernet card,
 OL6.9-2, OL6.9-3
Network of Workstations, OL6.15-8–6.15-9
 implementing, 536
 multistage, 537
Networking, OL6.9-4
 operating system in, OL6.9-4–6.9-5
Network topologies, 534–537
 advantages, 23
 bandwidth, 535
 crossbar, 535
 fully connected, 535
 local area (LANs), 24
 multistage, 535
 wide area (WANs), 24
Newton's iteration, 218
Next state
 nonsequential, D-24
 sequential, D-23
Next-state function, 463, B-67
 defined, 463
 implementing, with sequencer, D-22–28
Next-state outputs, D-10, D-12–13
 example, D-12–13
 implementation, D-12
 logic equations, D-12–13
 truth tables, D-15
No Redundancy (RAID 0), OL5.11-4
No write allocation, 394
Nonblocking assignment, B-24
Nonblocking caches, 344, 472
Nonuniform memory access (NUMA), 518
Nonvolatile memory, 22
Nops, 314
nor (NOR), 64
 cross-coupled, B-50
 D latch implemented with, B-52
NOR gates, B-8
 NOR operation, 89, A-54, E-25
 OR operation, 89, A-55, B-6
Numbers
 binary, 73
 computer versus real-world, 221
decimal, 73, 76
denormalized, 222
hexadecimal, 81–82
signed, 73–78
unsigned, 73–78
NVIDIA GeForce 8800, C-46–55
 all-pairs N-body algorithm, C-71
dense linear algebra computations, C-51–53
 FFT performance, C-53
 instruction set, C-49
 performance, C-51
 rasterization, C-50
ROP, C-50–51
scalability, C-51
sorting performance, C-54–55
special function approximation
 statistics, C-43
 special function unit (SFU), C-50
streaming multiprocessor (SM), C-48–49
streaming processor, C-49–50
streaming processor array (SPA), C-46
texture/processor cluster (TPC), C-47–48
NVIDIA GPU architecture, 523–526
NVIDIA GTX 280, 548–553
NVIDIA Tesla GPU, 548–553

O
Object files, 125, A-4
 debugging information, 124
 defined, A-10
 format, A-13–14
 header, 125, A-13
 linking, 126–129
 relocation information, 125
 static data segment, 125
 symbol table, 125, 126
 text segment, 125
Object-oriented languages. See also Java
 brief history, OL2.21-8
 defined, 145, OL2.15-5
 One's complement, 79, B-29
 Operands
 control line setting and, 264
 defined, 82, 262
OpenGL, C-13
OpenMP (Open MultiProcessing), 520, 540
Operands, 66–73. See also Instructions
 32-bit immediate, 112–113
 adding, 179
 arithmetic instructions, 66
 compiling assignment when in memory, 69
 constant, 72–73
 division, 189
 floating-point, 212
 memory, 68–69
 MIPS, 64
 multiplication, 183
 shifting, 148
Operating systems
 brief history, OL5.17-9–5.17-12
 defined, 13
 encapsulation, 22
 in networking, OL6.9-4–6.9-5
Operations
 atomic, implementing, 121
 hardware, 63–66
 logical, 87–89
 x86 integer, 152, 154–155
Optimization
 class explanation, OL2.15-14
 compiler, 141
 control implementation, D-27–28
 global, OL2.15-5
 high-level, OL2.15-4–2.15-5
 local, OL2.15-5, OL2.15-8
 manual, 144
 or (OR), 64
 OR operation, 89, A-55, B-6
 ori (Or Immediate), 64
 Out-of-order execution
 defined, 341
 performance complexity, 416
 processors, 344
Output devices, 16
Overflow
 defined, 74, 198
 detection, 180
 exceptions, 329
 floating-point, 198
 occurrence, 75
 saturation and, 181
 subtraction, 179
P
P+Q redundancy (RAID 6), OL5.11-7
Packed floating-point format, 224
Page faults, 434. See also Virtual memory
 for data access, 450
 defined, 428
 handling, 429, 446–453
 virtual address causing, 449, 450
Page tables, 456
 defined, 432
 illustrated, 435
 indexing, 432
 inverted, 436
 levels, 436–437
 main memory, 437
 register, 432
 storage reduction techniques, 436–437
 updating, 432
 VMM, 452
Pages. See also Virtual memory
 defined, 428
 dirty, 437
 finding, 432–434
 LRU, 434
 offset, 429
 physical number, 429
 placing, 432–434
size, 430
virtual number, 429
Parallel bus, OL6.9-3
Parallel execution, 121
Parallel memory system, C-36–41. See also Graphics processing units (GPUs)
caches, C-38
constant memory, C-40
DRAM considerations, C-37–38
global memory, C-39
load/store access, C-41
local memory, C-40
memory spaces, C-39
MMU, C-38–39
ROP, C-41
shared memory, C-39–40
surfaces, C-41
texture memory, C-40
Parallel processing programs, 502–507
creation difficulty, 502–507
defined, 501
for message passing, 519–520
great debates in, OL6.15-5
for shared address space, 519–520
use of, 559
Parallel reduction, C-62
Parallel scan, C-60–63
CUDA template, C-61
inclusive, C-60
tree-based, C-62
Parallel software, 501
Parallelism, 12, 43, 332–344
and computers arithmetic, 222–223
data-level, 233, 508
debates, OL6.15-5–6.15-7
GPUs and, 523, C-76
instruction-level, 43, 332, 343
memory hierarchies and, 466–470, OL5.11-2
multicore and, 517
multiple issue, 332–339
multithreading and, 517
performance benefits, 44–45
process-level, 500
redundant arrays and inexpensive disks, 470
subword, E-17
task, C-24
task-level, 500
thread, C-22
Paravirtualization, 482
PA-RISC, E-14, E-17
branch vectored, E-35
conditional branches, E-34, E-35
debug instructions, E-36
decimal operations, E-35
extract and deposit, E-35
instructions, E-34–36
load and clear instructions, E-36
multiply/add and multiply/subtract, E-36
nullification, E-34
nullifying branch option, E-25
store bytes short, E-36
synthesized multiply and divide, E-34–35
Parity, OL5.11-5
bits, 421
code, 420, B-65
PARSEC (Princeton Application Repository for Shared Memory Computers), 540
Pass transistor, B-63
PCI-Express (PCIE), 537, C-8, OL6.9-2
PC-relative addressing, 114, 116
Peak floating-point performance, 542
Pentium bug morality play, 231–232
Performance, 28–36
assessing, 28
classic CPU equation, 36–40
components, 38
CPU, 33–35
defining, 29–32
equation, using, 36
improving, 34–35
instruction, 35–36
measuring, 33–35, OL1.12-10
program, 39–40
ratio, 31
relative, 31–32
response time, 30–31
sorting, C-54–55
throughput, 30–31
time measurement, 32
Personal computers (PCs), 7
defined, 5
Personal mobile device (PMD) defined, 7
Petabyte, 6
Physical addresses, 428
mapping to, 428–429
space, 517, 521
Physically addressed caches, 443
Pipeline registers
before forwarding, 309
dependences, 308
forwarding unit selection, 312
Pipeline stalls, 280
avoiding with code reordering, 280
data hazards and, 313–316
insertion, 315
load-use, 318
as solution to control hazards, 282
Pipelined branches, 319
Pipelined control, 300–303. See also Control
call lines, 300, 303
overview illustration, 316
specifying, 300
Pipelined datapaths, 286–303
with connected control signals, 304
with control signals, 300–303
corrected, 296
illustrated, 289
in load instruction stages, 296
Pipelined dependencies, 305
Pipelines
branch instruction impact, 317
effectiveness, improving, OL4.16–4.16-5
execute and address calculation stage, 290, 292
five-stage, 274, 290, 299
graphic representation, 279, 296–300
instruction decode and register file read stage, 289, 292
instruction fetch stage, 290, 292
instructions sequence, 313
latency, 286
memory access stage, 290, 292
multiple-clock-cycle diagrams, 296–297
performance bottlenecks, 343
single-clock-cycle diagrams, 296–297
stages, 274
static two-issue, 335
write-back stage, 290, 294
Pipelining, 12, 272–286
advanced, 343–344
benefits, 272
cost hazards, 281–282
data hazards, 278
I-18

Index

Pipelining (Continued)
exceptions and, 327–332
execution time and, 286
fallacies, 355–356
hazards, 277–278
instruction set design for, 277
laundry analogy, 273
overview, 272–286
paradox, 273
performance improvement, 277
pitfall, 355–356
simultaneous executing instructions, 286
speed-up formula, 273
structural hazards, 277, 294
summary, 285
throughput and, 286

Pitfalls. See also Fallacies
address space extension, 479
arithmetic, 229–232
associativity, 479
defined, 49
GPUs, C-74–75
ignoring memory system behavior, 478
memory hierarchies, 478–482
out-of-order processor evaluation, 479
performance equation subset, 50–51
pipelining, 355–356
pointer to automatic variables, 160
sequential word addresses, 160
simulating cache, 478
software development with
multiprocessors, 556
VMM implementation, 481, 481–482
Pixel shader example, C-15–17

Pixels, 18

Pointers
arrays versus, 141–145
frame, 103
global, 102
incrementing, 143
Java, OL2.15–26
stack, 98, 102
Polling, OL6.9-8
Pop, 98
Power
clock rate and, 40
critical nature of, 53
efficiency, 343–344
relative, 41
PowerPC
algebraic right shift, E-33
branch registers, E-32–33
condition codes, E-12
instructions, E-12–13
instructions unique to, E-31–33
load multiple/store multiple, E-33
logical shifted immediate, E-33
rotate with mask, E-33
Precise interrupts, 332
Prediction, 12
2-bit scheme, 322
accuracy, 321, 324
dynamic branch, 321–323
loops and, 321–323
steady-state, 321
Prefetching, 482, 544
Primitive types, OL2.15-26
Procedure calls
canvention, A-22–33
defined, 49
example, A-27–33
frame, A-23
preservation across, 102
Procedures, 96–106
compiling, 98
compiling, showing nested procedure
linking, 101–102
execution steps, 96
frames, 103
leaf, 100
nested, 100–102
recursive, 105, A-26–27
for setting arrays to zero, 142
sort, 135–139
strcpy, 108–109
string copy, 108–109
swap, 133
Process identifiers, 446
Process-level parallelism, 500
Processors, 242–356
as cores, 43
clock, 19
data path, 19
defined, 17, 19
dynamic multiple-issue, 333
multiple-issue, 333
out-of-order execution, 344, 416
performance growth, 44
ROP, C-12, C-41
speculation, 333–334
static multiple-issue, 333, 334–339
streaming, C-34
superscalar, 339, 515–516, OL4.16-5
technologies for building, 24–28
two-issue, 336–337
vector, 508–510
VLIW, 335
Product, 183
Product of sums, B-11
Program counters (PCs), 251
changing with conditional branch, 324
defined, 98, 251
exception, 445, 447
incrementing, 251, 253
instruction updates, 289
Program libraries, A-4
Program performance
elements affecting, 39
understanding, 9
Programmable array logic (PAL), B-78
Programmable logic arrays (PLAs)
component dots illustration, B-16
defined, B-12
element, B-13–14
illustrated, B-13
ROMs and, B-15–16
size, D-20
truth table implementation, B-13
Programmable logic devices (PLDs), B-78
Programmable ROMs (PROMs), B-14
Programming languages. See also specific
languages
defined, 49
brief history of, OL2.21-7–2.21-8
object-oriented, 145
variables, 67
Programs
assembly language, 123
Java, starting, 131–132
parallel processing, 502–507
starting, 123–132
translated, 123–132
Propagate
definition, B-40
element, B-44
super, B-41
Protected keywords, OL2.15-21
Protection
defined, 428
implementing, 444–446
mechanisms, OL5.17-9
VMs for, 424
Protection group, OL5.11-5
Pseudo MIPS
Index

instruction set, 235
Pseudodirect addressing, 116
Pseudoinstructions
defined, 124
summary, 125
Pthreads (POSIX threads), 540
PTX instructions, C-31, C-32
Public keywords, OL2.15-21
Push
defined, 98
using, 100
Quad words, 154
Quicksort, 411, 412
Quotient, 189
Race, B-73
Radix sort, 411, 412, C-63–65
CUDA code, C-64
implementation, C-63–65
RAID, See Redundant arrays of inexpensive disks (RAID)
RAM, 9
Raster operation (ROP) processors, C-12, C-41, C-50–51
fixed function, C-41
Raster refresh buffer, 18
Rasterization, C-50
Ray casting (RC), 552
Read-only memories (ROMs), B-14–16
control entries, D-16–17
control function encoding, D-18–19
dispatch, D-25
implementation, D-15–19
logic function encoding, B-15
overhead, D-18
PLAs and, B-15–16
programmable (PROM), B-14
total size, D-16
Read-stall cycles, 399
Read-write head, 381
Receive message routine, 529
Receiver Control register, A-39
Receiver Data register, A-38, A-39
Recursive procedures, 105, A-26–27. See also Procedures
call in, A-29–30
Reduced instruction set computer (RISC) architectures, E-2–45, OL2.21-5, OL4.16-4. See also Desktop and server RISCs: Embedded RISCs
group types, E-3–4
instruction set lineage, E-44
Reduction, 519
Redundant arrays of inexpensive disks (RAID), OL5.11-2–5.11-8
history, OL5.11-8
RAID 0, OL5.11-4
RAID 1, OL5.11-5
RAID 2, OL5.11-5
RAID 3, OL5.11-5
RAID 4, OL5.11-5–5.11-6
RAID 5, OL5.11-6–5.11-7
RAID 6, OL5.11-7
spread of, OL5.11-6
summary, OL5.11-7–5.11-8
use statistics, OL5.11-7
Reference bit, 435
References
absolute, 126
forward, A-11
types, OL2.15-26
unresolved, A-4, A-18
Register addressing, 116
Register allocation, OL2.15-11–2.15-13
Register files, B-50, B-54–56
defined, 252, B-50, B-54
in behavioral Verilog, B-57
single, 257
two read ports implementation, B-55
with two read ports/one write port, B-55
write port implementation, B-56
Register-memory architecture, OL2.21-3
Registers, 152, 153–154
architectural, 325–332
base, 69
callee-saved, A-23
caller-saved, A-23
Cause, A-35
clock cycle time and, 67
compiling C assignment with, 67–68
Count, A-34
defined, 66
destination, 83, 262
floating-point, 217
left half, 290
mapping, 80
MIPS conventions, 105
number specification, 252
page table, 432
pipeline, 308, 309, 312
primitives, 66
Receiver Control, A-39
Receiver Data, A-38, A-39
renaming, 338
right half, 290
spilling, 71
Status, 327, A-35
temporary, 67, 99
Transmitter Control, A-39–40
Transmitter Data, A-40
use convention, A-24
use convention, A-22
variables, 67
Relative performance, 31–32
Relative power, 41
Reliability, 418
Relocation information, A-13, A-14
Remainder
defined, 189
instructions, A-55
Reorder buffers, 343
Replication, 468
Requested word first, 392
Request-level parallelism, 532
Reservation stations
buffering operands in, 340–341
defined, 339–340
Response time, 30–31
Restartable instructions, 448
Return address, 97
Return from exception (ERET), 445
R-format, 262
ALU operations, 253
defined, 83
Ripple carry
adder, B-29
carry lookahead speed versus, B-46
Roofline model, 542–543, 544, 545
with ceilings, 546, 547
computational roofline, 545
illustrated, 542
Opteron generations, 543, 544
with overlapping areas shaded, 547
peak floating-point performance, 542
peak memory performance, 543
with two kernels, 547
Rotational delay. See Rotational latency
Rotational latency, 383
Rounding, 218
 accurate, 218
 bits, 220
 with guard digits, 219
 IEEE 754 modes, 219
Row-major order, 217, 413
R-type instructions, 252
 datapath for, 264–265
 datapath in operation for, 266
Saturation, 181
sb (Store Byte), 64
sc (Store Conditional), 64
SCALAPAK, 230
Scaling
 strong, 505, 507
 weak, 505
Scientific notation
 adding numbers in, 203
 defined, 196
 for reals, 197
Search engines, 4
Secondary memory, 23
Sectors, 381
Seek, 382
Segmentation, 431
Selector values, B-10
Semiconductors, 25
Send message routine, 529
Sensitivity list, B-24
Sequencers
 explicit, D-32
 implementing next-state function with, D-22–28
Sequential logic, B-5
Servers, OL5. See also Desktop and server RISCs
 cost and capability, 5
 Service accomplishment, 418
 Service interruption, 418
 Set instructions, 93
Set-associative caches, 403. See also Caches
 address portions, 407
 block replacement strategies, 457
 choice of, 456
 four-way, 404, 407
 memory-block location, 403
 misses, 405–406
 n-way, 403
 two-way, 404
 Setup time, B-53, B-54
 sh (Store Halfword), 64
 Shaders
 defined, C-14
 floating-point arithmetic, C-14
 graphics, C-14–15
 pixel example, C-15–17
 Shading languages, C-14
 Shadowing, OL5.11-5
 Shared memory. See also Memory as low-latency memory, C-21
 caching in, C-58–60
 CUDA, C-58
 N-body and, C-67–68
 per-CTA, C-39
 SRAM banks, C-40
 Shared memory multiprocessors (SMP), 517–521
 defined, 501, 517
 single physical address space, 517
 synchronization, 518
 Shift amount, 82
 Shift instructions, 87, A-55–56
 Sign and magnitude, 197
 Sign bit, 76
 Sign extension, 254
 defined, 76
 shortcut, 78
 Signals
 asserted, 250, B-4
 control, 250, 263–264
 deasserted, 250, B-4
 Signed division, 192–194
 Signed multiplication, 187
 Signed numbers, 73–78
 sign and magnitude, 75
 treating as unsigned, 94–95
 Significands, 198
 addition, 203
 multiplication, 206
 Silicon, 25
 as key hardware technology, 53
 crystal ingot, 26
 defined, 26
 wafers, 26
 Silicon crystal ingot, 26
 SIMD (Single Instruction Multiple Data), 507–508, 558
 computers, OL6.15-2–6.15-4
 data vector, C-35
 extensions, OL6.15-4
 for loops and, OL6.15-3
 massively parallel multiprocessors, OL6.15-2
 small-scale, OL6.15-4
 vector architecture, 508–510
 in x86, 508
 SIMMs (single inline memory modules), OL5.17-5, OL5.17-6
 Simple programmable logic devices (SPLDs), B-78
 Simplicity, 161
 Simultaneous multithreading (SMT), 515–517
 support, 515
 thread-level parallelism, 517
 unused issue slots, 515
 Single error correcting/Double error correcting (SEC/DEC), 420–422
 Single instruction single data (SISD), 507
 Single precision. See also Double precision
 binary representation, 201
 defined, 198
 Single-clock-cycle pipeline diagrams, 296–297
 illustrated, 299
 Single-cycle datapaths. See also Datapaths
 illustrated, 287
 instruction execution, 288
 Single-cycle implementation
 control function for, 269
 defined, 270
 nonpipelined execution versus pipelined execution, 276
 non-use of, 271–272
 penalty, 271–272
 pipelined performance versus, 274
 Single-instruction multiple-thread (SIMT), C-27–30
 overhead, C-35
 multithreaded warp scheduling, C-28
 processor architecture, C-28
 warp execution and divergence, C-29–30
 Single-program multiple data (SPMD), C-22
 sll (Shift Left Logical), 64
 slt (Set Less Than), 64
 slti (Set Less Than Imm.), 64
sltiu (Set Less Than Imm.Unsigned), 64
sltu (Set Less Than Unsig.), 64
Smalltalk-80, OL2.21-8
Smart phones, 7
Snooping protocol, 468–470
Snoopy cache coherence, OL5.12-7
Software optimization
via blocking, 413–418
Sort algorithms, 141
Software
layers, 13
multiprocessor, 500
parallel, 501
as service, 7, 532, 558
systems, 13
Sort procedure, 135–139. See also
Procedures
code for body, 135–137
full procedure, 138–139
passing parameters in, 138
preserving registers in, 138
procedure call, 137
register allocation for, 135
Sorting performance, C-54–55
Source files, A-4
Source language, A-6
Space allocation
on heap, 104–106
on stack, 103
SPARC
annulling branch, E-23
CASA, E-31
conditional branches, E-10–12
fast traps, E-30
floating-point operations, E-31
instructions, E-29–32
least significant bits, E-31
multiple precision floating-point
results, E-32
nonfaulting loads, E-32
overlapping integer operations, E-31
quadruple precision floating-point
arithmetic, E-32
register windows, E-29–30
support for LISP and Smalltalk, E-30
Sparse matrices, C-55–58
Sparse Matrix-Vector multiply (SpMV),
C-55, C-57, C-58
CUDA version, C-57
serial code, C-57
shared memory version, C-59
Spatial locality, 374
large block exploitation of, 391
tendency, 378
SPEC, OL1.12-11–1.12-12
CPU benchmark, 46–48
power benchmark, 48–49
SPEC2000, OL1.12-12
SPEC2006, 233, OL1.12-12
SPEC89, OL1.12-11
SPEC92, OL1.12-12
SPEC95, OL1.12-12
SPECrate, 538–539
SPECratio, 47
Special function units (SFUs), C-35, C-50
defined, C-43
Speculation, 333–334
hardware-based, 341
implementation, 334
performance and, 334
problems, 334
recovery mechanism, 334
Speed-up challenge, 503–505
balancing load, 505–506
bigger problem, 504–505
Spilling registers, 71, 98
SPIM, A-40–45
byte order, A-43
features, A-42–43
getting started with, A-42
MIPS assembler directives support,
A-47–49
speed, A-41
system calls, A-43–45
versions, A-42
virtual machine simulation, A-41–42
Split algorithm, 552
Split caches, 397
Square root instructions, A-79
sra (Shift Right Arith.), A-56
srl (Shift Right Logical), 64
Stack architectures, OL2.21-4
Stack pointers
adjustment, 100
defined, 98
values, 100
Stack segment, A-22
Stacks
allocating space on, 103
for arguments, 140
defined, 98
pop, 98
push, 98, 100
recursive procedures, A-29–30
Stalls, 280
as solution to control hazard, 282
avoiding with code reordering, 280
behavioral Verilog with detection,
OL4.13-6–4.13-8
data hazards and, 313–316
illustrations, OL4.13-23, OL4.13-30
insertion into pipeline, 315
load-use, 318
memory, 400
write-back scheme, 399
write buffer, 399
Standby spares, OL5.11-8
State
in 2-bit prediction scheme, 322
assignment, B-70, D-27
bits, D-8
exception, saving/restoring, 450
logic components, 249
specification of, 432
State elements
clock and, 250
combinational logic and, 250
defined, 248, B-48
inputs, 249
in storing/accessing instructions,
252
register file, B-50
Static branch prediction, 335
Static data
as dynamic data, A-21
defined, A-20
segment, 104
Static multiple-issue processors, 333,
334–339. See also Multiple issue
control hazards and, 335–336
instruction sets, 335
with MIPS ISA, 335–338
Static random access memories (SRAMs),
378, 379, B-58–62
array organization, B-62
basic structure, B-61
defined, 21, B-58
fixed access time, B-58
large, B-59
read/write initiation, B-59
synchronous (SSRMs), B-60
three-state buffers, B-59, B-60
Static variables, 102
Status register
fields, A-34, A-35
Steady-state prediction, 321
Sticky bits, 220
Store buffers, 343
Store instructions. See also Load instructions
access, C-41
base register, 262
block, 149
compiling with, 71
conditional, 122
defined, 71
details, A-68–70
EX stage, 294
floating-point, A-79
ID stage, 291
IF stage, 291
instruction dependency, 312
list of, A-68–70
MEM stage, 295
unit for implementing, 255
WB stage, 295
Store word, 71
Stored program concept, 63
as computer principle, 86
illustrated, 86
principles, 161
Strcpy procedure, 108–109. See also Procedures
as leaf procedure, 109
pointers, 109
Stream benchmark, 548
Streaming multiprocessor (SM), C-48–49
Streaming processors, C-34, C-49–50
array (SPA), C-41, C-46
Streaming SIMD Extension 2 (SSE2) floating-point architecture, 224
Streaming SIMD Extensions (SSE) and advanced vector extensions in x86, 224–225
Stretch computer, OL4.16-2
Strings
defined, 107
in Java, 109–111
representation, 107
Strip mining, 510
Striping, OL5.11-4
Strong scaling, 505, 517
Structural hazards, 277, 294
sub (Subtract), 64
sub.d (FP Subtract Double), A-79
sub.s (FP Subtract Single), A-80
Subnormals, 222
Subtraction, 178–182. See also Arithmetic binary, 178–179
floating-point, 211, A-79–80
instructions, A-56–57
negative number, 179
overflow, 179
subu (Subtract Unsigned), 119
Subword parallelism, 222–223, 352, E-17
and matrix multiply, 225–228
Sum of products, B-11, B-12
Supercomputers, OL4.16-3
defined, 5
Superscalars
defined, 339, OL4.16-5
dynamic pipeline scheduling, 339
multithreading options, 516
Surfaces, C-41
sw (Store Word), 64
Swap procedure, 133. See also Procedures
body code, 135
full, 135, 138–139
register allocation, 133
Swap space, 434
swc1 (Store FP Single), A-73
Symbol tables, 125, A-12, A-13
Synchronization, 121–123, 552
barrier, C-18, C-20, C-34
defined, 518
lock, 121
overhead, reducing, 44–45
unlock, 121
Synchronizers
defined, B-76
failure, B-77
from D flip-flop, B-76
Synchronous DRAM (SRAM), 379–380, B-60, B-65
Synchronous SRAM (SSRAM), B-60
Synchronous system, B-48
Syntax tree, OL2.15-3
System calls, A-43–45
code, A-43–44
defined, 445
loading, A-43
Systems software, 13
SystemVerilog
cache controller, OL5.12-2
cache data and tag modules, OL5.12-6
FSM, OL5.12-7
simple cache block diagram, OL5.12-4
type declarations, OL5.12-2
T
Tablets, 7
Tags
defined, 384
in locating block, 407
page tables and, 434
size of, 409
Tail call, 105–106
Task identifiers, 446
Task parallelism, C-24
Task-level parallelism, 500
TebiByte (TiB), 5
Telsa PTX ISA, C-31–34
arithmetic instructions, C-33
barrier synchronization, C-34
GPU thread instructions, C-32
memory access instructions, C-33–34
Temporal locality, 374
tendency, 378
Temporary registers, 67, 99
Terabyte (TB), 6
defined, 5
Text segment, A-13
Texture memory, C-40
Texture/processor cluster (TPC), C-47–48
TFLOPS multiprocessor, OL6.15-6
Thrashing, 453
Thread blocks, 528
creation, C-23
defined, C-19
managing, C-30
memory sharing, C-20
synchronization, C-20
Thread parallelism, C-22
Threads
creation, C-23
CUDA, C-36
ISA, C-31–34
managing, C-30
memory latencies and, C-74–75
multiple, per body, C-68–69
warps, C-27
Three Cs model, 459–461
Three-state buffers, B-59, B-60
Throughput
defined, 30–31
multiple issue and, 342
pipelining and, 286, 342
Thumb, E-15, E-38
Timing
asynchronous inputs, B-76–77
level-sensitive, B-75–76
methodologies, B-72–77
two-phase, B-75
TLB misses, 439. See also Translation-
lookaside buffer (TLB)
entry point, 449
handler, 449
handling, 446–453
occurrence, 446
problem, 453
Tomasulo’s algorithm, OL4.16-3
Touchscreen, 19
Tournament branch predictors, 324
Tracks, 381–382
Transfer time, 383
Transistors, 25
Translation-lookaside buffer (TLB),
438–439, E-26–27, OL5.17-6. See
also TLB misses
associativities, 439
illustrated, 438
integration, 440–441
Intrinsity FastMATH, 440
typical values, 439
Transmit driver and NIC hardware time
versus. receive driver and NIC hardware
time, OL6.9-8
Transmitter Control register, A-39–40
Transmitter Data register, A-40
Trap instructions, A-64–66
Tree-based parallel scan, C-62
Truth tables, B-5
ALU control lines, D-5
for control bits, 260–261
datapath control outputs, D-17
datapath control signals, D-14
defined, 260
element, B-5
next-state output bits, D-15
PLA implementation, B-13
Two’s complement representation, 75–76
advantage, 75–76
negation shortcut, 76
rule, 79

sign extension shortcut, 78
Two-level logic, B-11–14
Two-phase clocking, B-75
TX-2 computer, OL6.15-4

U
Unconditional branches, 91
Underflow, 198
Unicode
alphabets, 109
defined, 110
example alphabets, 110
Unified GPU architecture, C-10–12
illustrated, C-11
processor array, C-11–12
Uniform memory access (UMA), 518,
C-9
multiprocessors, 519
Units
commit, 339–340, 343
count, 247–248, 259–261, D-4–8,
D-10, D-12–13
defined, 219
floating point, 219
hazard detection, 313, 314–315
for load/store implementation, 255
special function (SFUs), C-35, C-43,
C-50
UNIVAC I, OL1.12-5
UNIX, OL2.21–8, OL5.17-9–5.17-12
AT&T, OL5.17-10
Berkeley version (BSD), OL5.17-10
genius, OL5.17-12
history, OL5.17-9–5.17-12
Unlock synchronization, 121
Unresolved references
defined, A-4
linkers and, A-18
Unsigned numbers, 73–78
Use latency
defined, 336–337
one-instruction, 336–337

V
Vacuum tubes, 25
Valid bit, 386
Variables
C language, 102
programming language, 67
register, 67
static, 102
storage class, 102
type, 102
VAX architecture, OL2.21-4, OL5.17-7
Vector lanes, 512
Vector processors, 508–510. See also
Processors
conventional code comparison,
509–510
instructions, 510
multimedia extensions and, 511–512
scalar versus, 510–511
Vectored interrupts, 327
Verilog
behavioral definition of MIPS ALU,
B-25
behavioral definition with bypassing,
OL4.13-4–4.13-6
behavioral definition with stalls for
loads, OL4.13-6–4.13-8
behavioral specification, B-21, OL4.13-
2–4.13-4
behavioral specification of multicycle
MIPS design, OL4.13-12–4.13-13
behavioral specification with
simulation, OL4.13-2
behavioral specification with stall
detection, OL4.13-6–4.13-8
behavioral specification with synthesis,
OL4.13-11–4.13-16
blocking assignment, B-24
branch hazard logic implementation,
OL4.13-8–4.13-10
combinational logic, B-23–26
datatypes, B-21–22
defined, B-20
forwarding implementation,
OL4.13-4
MIPS ALU definition in, B-35–38
modules, B-23
multicycle MIPS datapath, OL4.13-14
nonblocking assignment, B-24
operators, B-22
program structure, B-23
reg, B-21–22
sensitivity list, B-24
sequential logic specification, B-56–58
structural specification, B-21
wire, B-21–22
Vertical microcode, D-32
Very large-scale integrated (VLSI) circuits, 25
Very Long Instruction Word (VLIW) defined, 334–335
first generation computers, OL4.16-5 processors, 335
VHDL, B-20–21
Video graphics array (VGA) controllers, C-3–4
Virtual addresses causing page faults, 449 defined, 428
mapping from, 428–429 size, 430
Virtual machine monitors (VMMs) defined, 424 implementing, 481, 481–482 laissez-faire attitude, 481 page tables, 452
in performance improvement, 427 requirements, 426
Virtual machines (VMs), 424–427 benefits, 424 defined, A-41 illusion, 452
instruction set architecture support, 426–427
performance improvement, 427
for protection improvement, 424
simulation of, A-41–42
Virtual memory, 427–454. See also Pages address translation, 429, 438–439 integration, 440–441
mechanism, 452–453
motivations, 427–428
page faults, 428, 434
protection implementation, 444–446
segmentation, 431
summary, 452–453
typing of, 452
writes, 437
Virtualizable hardware, 426
Virtually addressed caches, 443
Visual computing, C-3
Volatile memory, 22

W
Wafers, 26 defects, 26
dies, 26–27
yield, 27
Warehouse Scale Computers (WSCs), 7, 531–533, 558
Warps, 528, C-27
Weak scaling, 505
Wear levelling, 381
While loops, 92–93
Whirlwind, OL5.17-2
Wide area networks (WANs), 24. See also Networks
Words accessing, 68 defined, 66
double, 152
load, 68, 71
quad, 154
store, 71
Working set, 453

World Wide Web, 4

Worst-case delay, 272
Write buffers defined, 394
stalls, 399
write-back cache, 395
Write invalidate protocols, 468, 469
Write serialization, 467
Write-back caches. See also Caches
advantages, 458
coherence protocol, OL5.12-5
complexity, 395
defined, 394, 458
stalls, 399
write buffers, 395
Write-back stage
control line, 302
load instruction, 292
store instruction, 294
Writes complications, 394 expense, 453
handling, 393–395

memory hierarchy handling of, 457–458
schemes, 394
virtual memory, 437
write-back cache, 394, 395
write-through cache, 394, 395
Write-stall cycles, 400
Write-through caches. See also Caches
advantages, 458
defined, 393, 457
tag mismatch, 394

X
x86, 149–158
Advanced Vector Extensions in, 225
brief history, OL2.21-6
conclusion, 156–158
data addressing modes, 152, 153–154
evolution, 149–152
first address specifier encoding, 158
historical timeline, 149–152
instruction encoding, 155–156
instruction formats, 157
instruction set growth, 161
instruction types, 153
integer operations, 152–155
registers, 152, 153–154
SIMD in, 507–508, 508
Stream SIMD Extensions in, 224–225
typical instructions/functions, 155
typical operations, 157
Xerox Alto computer, OL1.12-8
XMM, 224

Y
Yahoo! Cloud Serving Benchmark (YCSB), 540
Yield, 27
YMM, 225

Z
Zettabyte, 6