The exam will be closed book. Materials that you may use during the test are:

- Your calculator and both sides of an 8½ x 11” cheat sheet that you may put anything on that you wish. Suggestions include:
 o Lecture material from textbook chapter 5 and other assorted topical lectures;
 o Homework specific issues;
 o Content from project presentations.

- Chapter 5 – Memory hierarchy
 a. Caches
 1. Direct accessed
 2. Fully associative
 3. N-way set associative
 4. Performance issues
 a. Block size tradeoffs
 b. Types of misses
 1. Compulsory
 2. Capacity
 3. Conflict
 c. Write-back vs. write-thru
 d. Block replacement policy
 e. Multi-level caches
 b. Virtual memory
 1. Address translation
 2. Page tables
 3. Translation Lookaside Buffers (TLB’s)
- Simultaneous multi-threading
- Project presentations
 o Konrad McClure – Super NES Architecture
 o Kyle Malaguit – Playstation 3’s Cell Engine
 o Kaden Sukachevin – Nature Inspired Architectures
 o Andrew Nascimento – Apple A-Series Processors
 o Russell Palma –
 o Greg Birge – ATtiny – Lite Custom Processor Design
 o Gary Jessup – Aegis Processor Architecture
 o Mason Wilde – Sinclair ZX Spectrum Computer
 o Jaymes Sullivan – Hardware Accelerators
 o Khalil Llewellyn – Exynos Processor
 o Travis Stanger – SRAM Memory
 o Andrew Binder – Drive Technologies
 o Dominick Christensen – History of DDR SDRAM
 o Caleb Froelich – Development of Non-volatile Memory
 o Caleb Herbel – Overview of Raid Technology
 o Daniel Arlt – Quantum Computing
 o Chrisner Garcesa – Quantum Computing
 o Elizabeth Ventura – Siri Architecture
 o Jeffrey Grange – GPU Architectures
 o Lucas Saca – GPU Architectures
 o Tanek Russell – Cloud Computing
 o Caleb Jurgensen – Custom Assembler Design
 o Lucas Marcondes – Web GUI Software Architecture
 o Phong Pham / Christian Terrado – Custom Booth Processor