Review - Multiplication

0110 = 6

32-bit ALU

0000 0100 = 5
add 0110 0101
0011 0010
add 0011 0010
0001 1000
add 0111 1001
0011 1100
add 0011 1100
0001 1110 = 30
Review - Division

Floating Point

- What can be represented in N bits?
 - Unsigned: 0 to $2^N - 1$
 - 2's Complement: -2^{N-1} to $2^{N-1} - 1$
- But, what about--
 - Very large numbers?
 - 9,349,398,989,787,762,244,859,087,678
 - 1.23×10^{37}
 - Very small numbers?
 - 0.0000000000000000000000045691
 - 2.98×10^{-32}
 - Fractional values?: 0.35
 - Mixed numbers?: 10.28
 - Irrationals?: π
Floating Point

The essential idea of floating point representation is that a fixed number of bits are used (usually 32 or 64) and that the binary point "floats" to where it is needed. Some of the bits of a floating point representation must be used to say where the binary point lies. The programmer does not need to explicitly keep track of it.

IEEE (Institute of Electrical and Electronics Engineers) created a standard for floating point. This is the IEEE 754 standard, released in 1985 and updated in 2008. All "main stream" hardware and software follows this standard.

Floating Point

- Floating Point provides representation for non-integral numbers.
- Like scientific notation, we need to “normalize”
 - -2.34×10^{56}
 - $+0.002 \times 10^{-4}$
 - $+987.02 \times 10^{9}$
- In binary
 - $\pm1.xxxxxxxxx_{2} \times 2^{yyyy}$
- This is the representation for Types float and double in C.
Sign and Magnitude Representation

- More exponent bits ⇒ wider range of numbers.
- More fraction bits ⇒ higher precision.
- For normalized numbers, we are guaranteed that the number is of the form 1.xxxx…. Hence, in IEEE 754 standard, the 1 is implicit.

IEEE Floating-Point Format

- S: sign bit (0 ⇒ non-negative, 1 ⇒ negative).
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary point 1 bit, so no need to represent it explicitly. This bit is referred to as the “hidden” bit.
 - Significand is the Fraction with the “1.” restored.
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned.
 - Single: Bias = 127; Double: Bias = 1023

\[x = (-1)^S \times (1 + \text{Fraction}) \times 2^{(\text{Exponent} - \text{Bias})} \]
Single-Precision Range

- Exponents 00000000 and 11111111 are reserved for exceptions.
- Smallest value
 - Exponent: 00000001
 ⇒ actual exponent = 1 – 127 = –126
 - Fraction: 000…00 ⇒ significand = 1.0
 - ±1.0 × 2⁻¹²⁶ ≈ ±1.2 × 10⁻³⁸
- Largest value
 - Exponent: 11111110
 ⇒ actual exponent = 254 – 127 = +127
 - Fraction: 111…11 ⇒ significand ≈ 2.0
 - ±2.0 × 2⁺¹²⁷ ≈ ±3.4 × 10⁺³⁸

Double-Precision Range

- Exponents 0000…00 and 1111…11 reserved.
- Smallest value
 - Exponent: 00000000001
 ⇒ actual exponent = 1 – 1023 = –1022
 - Fraction: 000…00 ⇒ significand = 1.0
 - ±1.0 × 2⁻¹⁰²² ≈ ±2.2 × 10⁻³⁰⁸
- Largest value
 - Exponent: 11111111110
 ⇒ actual exponent = 2046 – 1023 = +1023
 - Fraction: 111…11 ⇒ significand ≈ 2.0
 - ±2.0 × 2⁺¹⁰²³ ≈ ±1.8 × 10⁺³⁰⁸
Floating-Point Example

What number is represented by the single-precision float 11000000101000...00?

- S = 1
- Exponent = 1000001₂ = 129
- Fraction = 01000...00₂
- \(x = (-1)^1 \times (1 + 01₂) \times 2^{(129 - 127)} \)
 = (-1) × 1.25 × 2²
 = -5.0

Floating-Point Example

What is the FP bit representation for -0.75₁₀?

- Represent -0.75
 - -0.75 = (-1)¹ × 1.1₂ × 2⁻¹
 - S = 1
 - Fraction = 1000...00₂
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 01111110₂
 - Double: -1 + 1023 = 1022 = 01111111110₂
- Single: 101111101000...00
- Double: 101111111101000...00
Code Example – Degree Conversion

- MIPS has a second set of 32 32-bit registers reserved for floating point operations.

```c
float f2c (float fahr)
{
    return ((5.0/9.0) * (fahr - 32.0));
}
```

(Argument fahr is stored in $f12)

```mips
lwc1 $f16, const5($gp)
lwc1 $f18, const9($gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra
```

Floating-Point Addition

- Addition (and subtraction)

\[
(\pm F1 \times 2^{E1}) + (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}
\]

- Step 0: Restore the hidden bit in F1 and in F2.
- Step 1: Align fractions by right shifting F2 by \(E1 - E2\) positions (assuming \(E1 \geq E2\)) keeping track of the lower (or higher) order bits shifted out.
- Step 2: Add the resulting F2 to F1 to form F3.
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - If F1 and F2 have the same sign, shift F3 and increment E3 (check for overflow).
 - If F1 and F2 have different signs, F3 may require many left shifts each time decrementing E3 (check for underflow).
- Step 4: Round F3 and possibly normalize again.
- Step 5: Rehide the most significant bit of F3 before storing the result.
Floating-Point Addition

- Consider a 4-digit decimal example
 - $9.999 \times 10^1 + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent.
 - $9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands
 - $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^2
- 4. Round and renormalize if necessary
 - 1.002×10^2

FP Adder Hardware

- Much more complex than integer adder.
- Doing it in one clock cycle would take too long
 - Much longer than integer operations.
 - Slower clock would penalize all instructions.
- FP adder usually takes several cycles
 - Can be pipelined.
Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum.
 - New exponent = $10 + (-5) = 5$
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - 1.0212×10^{6}
- 4. Round and renormalize if necessary
 - 1.021×10^{6}
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^{6}$
Denormal Numbers
- Exponent = 000...0 ⇒ hidden bit is 0
 \[x = (-1)^S \times (0 + \text{Fraction}) \times 2^{-\text{Bias}} \]
- Denormal numbers are smaller than normal numbers.
- Denormal with fraction = 000...0
 \[x = (-1)^S \times (0 + 0) \times 2^{-\text{Bias}} = \pm 0.0 \]

Infinities and NaNs
- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check.
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN).
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations.
Accurate Arithmetic

- The IEEE 754 Standard specifies additional rounding control
 - Extra bits of precision (guard, round, sticky).
 - Choice of rounding modes.
 - Allows programmer to fine-tune numerical behavior of a computation.
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults.
 - Trade-off between hardware complexity, performance, and market requirements.
- Rounding (except for truncation) requires the hardware to include extra bits during calculations
 - Guard bit – used to provide one bit when shifting left to normalize a result (e.g., when normalizing after division or subtraction).
 - Round bit – used to improve rounding accuracy.
 - Sticky bit – used to support Round to nearest even; it is set to a 1 whenever a 1 bit shifts (right) through it (e.g., when aligning during addition/subtraction).

x86 FP Instructions

<table>
<thead>
<tr>
<th>Data transfer</th>
<th>Arithmetic</th>
<th>Compare</th>
<th>Transcendental</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILD mem/ST(i)</td>
<td>FIADDP mem/ST(i)</td>
<td>F1:COMPP</td>
<td>FPATAN</td>
</tr>
<tr>
<td>FISTP mem/ST(i)</td>
<td>FISUBRP mem/ST(i)</td>
<td>F1:UCOMP</td>
<td>F2XMI</td>
</tr>
<tr>
<td>FLDPI</td>
<td>FIMULP mem/ST(i)</td>
<td></td>
<td>FCOS</td>
</tr>
<tr>
<td>FLDI</td>
<td>FIDIVRP mem/ST(i)</td>
<td></td>
<td>FPTAN</td>
</tr>
<tr>
<td>FLDZ</td>
<td>FSQRT</td>
<td></td>
<td>FPREM</td>
</tr>
<tr>
<td></td>
<td>FABS</td>
<td></td>
<td>FPSIN</td>
</tr>
<tr>
<td></td>
<td>FRNDINT</td>
<td></td>
<td>FYL2X</td>
</tr>
</tbody>
</table>

- Optional variations
 - I: integer operand.
 - P: pop operand from stack.
 - R: reverse operand order.
 - But not all combinations allowed.
Subword Parallelism

- ALUs are typically designed to perform 64-bit or 128-bit arithmetic.
- Some data types are much smaller, e.g., bytes for pixel RGB values, half-words for audio samples.
- Partitioning the carry-chains within the ALU can convert the 64-bit adder into 4 16-bit adders or 8 8-bit adders.
- A single load can fetch multiple values, and a single add instruction can perform multiple parallel additions, referred to as subword parallelism.

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied.
- Computer representations of numbers
 - Finite range and precision.
 - Need to account for this in programs.
- ISA’s support arithmetic
 - Signed and unsigned integers.
 - Floating-point approximation to real numbers.
- Bounded range and precision
 - Operations can overflow and underflow.
- MIPS ISA strongly supports IEEE-754.