Chapter 3

ALU Design

Review - A MIPS ALU Implementation

- Zero detect (slt, slti, sltiu, sltu, beq, bne)
- Overflow bit setting for signed arithmetic (add, addi, sub)
1-Bit ALU with Add, Or, And

- Multiplexor selects between Add, Or, And operations

![1-bit ALU circuit diagram]

32-bit Ripple Carry Adder

1-bit ALUs are connected “in series” with the carry-out of 1 box going into the carry-in of the next box

![32-bit Ripple Carry Adder diagram]
Incorporating Subtraction

Must invert bits of B and add a 1
• Include an inverter.
• CarryIn for the first bit is 1.
• The CarryIn signal (for the first bit) can be the same as the Binvert signal.

Incorporating NOR and NAND
Incorporating slt

- Perform \(a - b \) and check the sign
- New signal (Less) that is zero for ALU boxes 1-31
- The 31st box has a unit to detect overflow and sign – the sign bit serves as the Less signal for the 0th box

Incorporating beq

- Perform \(a - b \) and confirms that the result is all zero’s
Control Lines

What are the values of the control lines and what operations do they correspond to?

<table>
<thead>
<tr>
<th>Ai</th>
<th>Bn</th>
<th>Op</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>AND</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>OR</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>Add</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>10</td>
<td>Sub</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>11</td>
<td>SLT</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>00</td>
<td>NOR</td>
</tr>
</tbody>
</table>
Speed of Ripple Carry

- The carry propagates through every 1-bit box: each 1-bit box sequentially implements AND and OR – total delay is the time to go through 64 gates!
- You know that any logic equation can be expressed as the sum of products – so it should be possible to compute the result by going through only 2 gates!
- Caveat: need many parallel gates and each gate may have a very large number of inputs – it is difficult to efficiently build such large gates, so we’ll find a compromise:
 - moderate number of gates.
 - moderate number of inputs to each gate.
 - moderate number of sequential gates traversed.

Computing CarryOut

\[
\begin{align*}
\text{CarryIn1} &= b_0.\text{CarryIn0} + a_0.\text{CarryIn0} + a_0.b_0 \\
\text{CarryIn2} &= b_1.\text{CarryIn1} + a_1.\text{CarryIn1} + a_1.b_1 \\
&= b_1.b_0.c_0 + b_1.a_0.c_0 + b_1.a_0.b_0 + a_1.b_0.c_0 + a_1.a_0.c_0 + a_1.a_0.b_0 + a_1.b_1 \\
\ldots \\
\text{CarryIn32} &= \text{a really large sum of really large products}
\end{align*}
\]

- Potentially fast implementation as the result is computed by going thru just 2 levels of logic – unfortunately, each gate is enormous and slow.
Generate and Propagate

Equation re-phrased:
\[C_{i+1} = a_i b_i + a_i C_i + b_i C_i \]
\[= (a_i b_i) + (a_i + b_i) C_i \]

Stated verbally, the current pair of bits will **generate** a carry if they are both 1 and the current pair of bits will **propagate** a carry if either is 1

Generate signal = \(a_i b_i \)
Propagate signal = \(a_i + b_i \)

Therefore, \(C_{i+1} = G_i + P_i \cdot C_i \)

Generate and Propagate

\[c_1 = g_0 + p_0 c_0 \]
\[c_2 = g_1 + p_1 c_1 \]
\[= g_1 + p_1 g_0 + p_1 p_0 c_0 \]
\[c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0 \]
\[c_4 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0 \]

Either,
a carry was just generated, or
a carry was generated in the last step and was propagated, or
a carry was generated two steps back and was propagated by both the next two stages, or
a carry was generated \(N \) steps back and was propagated by every single one of the \(N \) next stages
Divide and Conquer

- The equations on the previous slide are still difficult to implement as logic functions – for the 32nd bit, we must AND every single propagate bit to determine what becomes of c0 (among other things).

- Hence, the bits are broken into groups (of 4) and each group computes its group-generate and group-propagate.

- For example, to add 32 numbers, you can partition the task as a tree.

\[
\begin{align*}
\text{P and G for 4-bit Blocks} \\
\text{Compute P0 and G0 (super-propagate and super-generate) for the first group of 4 bits (and similarly for other groups of 4 bits)} \\
P0 &= p_0.p_1.p_2.p_3 \\
G0 &= g_3 + g_2.p_3 + g_1.p_2.p_3 + g_0.p_1.p_2.p_3 \\
\text{Carry out of the first group of 4 bits is} \\
C1 &= G0 + P_0.c_0 \\
C2 &= G1 + P_1.G0 + P_1.P0.c_0 \\
\ldots \\
\text{By having a tree of sub-computations, each AND, OR gate has few inputs and logic signals have to travel through a modest set of gates (equal to the height of the tree).}
\end{align*}
\]
Example

Add A 0001 1010 0011 0011
and B 1110 0101 1110 1011

\[g \begin{array}{cccc} 0 & 0 & 0 & 0 \\ p \end{array} \begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{array} \]

\[\begin{array}{cccc} P & 1 & 1 & 1 & 0 \\ G & 0 & 0 & 1 & 0 \end{array} \]

C4 = 1

Carry Look-Ahead Adder

- 16-bit Ripple-carry takes 32 steps
- This design takes how many steps?
Implementation Overview

• We need memory
 § to store instructions
 § to store data
 § for now, let’s make them separate units

• We need registers, ALU, and a whole lot of control logic

• CPU operations common to all instructions:
 § use the program counter (PC) to pull instruction out of instruction memory
 § read register values

Big Picture

• What is the role of the Add units?
• Explain the inputs to the data memory unit.
• Explain the inputs to the ALU.
• Explain the inputs to the register unit.

Note: we haven’t bothered showing multiplexors
Clocking Methodology

- Which of the above units need a clock?
- What is being saved (latched) on the rising edge of the clock?
 Keep in mind that the latched value remains there for an entire cycle.