
Chapter 2 — MIPS I-Type Instructions 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 2

MIPS I-type Instructions

MIPS Architecture Recap

n MIPS: typical of RISC ISAs
n Keep it simple.
n Keep it small.
n Make the common case fast.

Chapter 2 — MIPS I-Type Instructions 2

MIPS-32 ISA

n Instruction Categories
n Computational (R-type)
n Load/Store
n Jump and Branch
n Floating Point

R0 - R31

PC
HI
LO

Registers

op

op

op

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

MIPS Register Convention

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

Chapter 2 — MIPS I-Type Instructions 3

R-type Instruction Format

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination
shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

MIPS R-type Instructions

n MIPS assembly language arithmetic instructions:
add $t0, $s1, $s2
sub $t0, $s1, $s2

§ Each arithmetic instruction performs one operation.

§ Each specifies exactly three operands that are all
contained in the datapath's register file ($t0,$s1,$s2)

§ destination ¬ source1 op source2

§ Instruction Format

0 17 18 8 0 0x22

Chapter 2 — MIPS I-Type Instructions 4

MIPS R-type Instructions

MIPS R-type Instructions

Chapter 2 — MIPS I-Type Instructions 5

MIPS I-Type Instructions

n Instruction Categories
n Computational
n Load/Store
n Jump and Branch
n Floating Point

R0 - R31

PC
HI
LO

Registers

op

op

op

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

MIPS I-type Instructions

Chapter 2 — MIPS I-Type Instructions 6

MIPS I-type Instructions

Memory Operands

n Values must be fetched from memory before instructions
can operate on them.

Load Word
lw $t0, memory-address

Store Word
sw $t0, memory-address

Register Memory

Register Memory

Chapter 2 — MIPS I-Type Instructions 7

Deciphering the LW instruction

n lw Register1, Offset(Register2)
n Register1 – where the data from memory is placed.
n The address of where the data resides in memory is calculated by

adding the offset to the contents of register2.
n The offset value is a 16-bit field, meaning access is limited to memory

locations within a region of ± 213 or 8,192 words (± 215 or 32,768 bytes)
of the address in the base register.

n The operation of the sw instruction is analogous.

n Load/Store Instruction Format (I format):
lw $t0, 24($s3)

Machine Language - Load Instruction

35 19 8 2410

Memory

data word address (hex)
0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s3 0x12004094

2410 + $s3 =

. . . 0001 1000
+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

0x120040ac$t0

Chapter 2 — MIPS I-Type Instructions 8

Example Code

C code: d[3] = d[2] + a;

n Note that in MIPS assembly code, $ is used to denote a register and
is used to denote a comment.

n Register $s4 contains the base address of the array d
n Variable a is stored in register $t1

Assembly: # implementation of C code

lw $t0, 8($s4) # d[2] is brought into $t0
add $t0, $t0, $t1 # the sum is in $t0
sw $t0, 12($s4) # $t0 is stored into d[3]

Byte Addresses
n Since 8-bit bytes are useful for many things, most architectures

allow byte-level addressing:
n MIPS Alignment restriction - the memory address of a word must be

on natural word boundaries (a multiple of 4).
n Big Endian: Leftmost byte is least-significant

n IBM 360/370, Motorola 68k, Sparc, HP PA
n Little Endian: Rightmost byte is least-significant

n Intel 80x86, DEC Vax, DEC Alpha (Windows NT)
n MIPS can actually be configured to work either way. The

QTSpim simulator uses the byte ordering of the computer it is
running on.

msb lsb
3 2 1 0

little endian byte 0

0 1 2 3
big endian byte 0

Chapter 2 — MIPS I-Type Instructions 9

addi $sp, $sp, 4 #$sp = $sp + 4
slti $t0, $s2, 15 #$t0 = 1 if $s2<15

n Machine format (I format):

MIPS Immediate Instructions

0x0A 18 8 0x0F

§ Small constants are used often in typical code.

§ The constant is kept inside the instruction itself

§ Immediate format limits values to the range +215 – 1 to -215

n Sometimes you need to load a 32-bit constant into a register. For
this, you must use two instructions.

n The "load upper immediate" (lui) instruction loads the upper 16 bits:
lui $t0, 1010101010101010

n To load the lower 16 bits, you use:
ori $t0, $t0, 1010101010101010

What About Larger Constants?

16 0 8 10101010101010102

1010101010101010

0000000000000000 1010101010101010

0000000000000000

1010101010101010 1010101010101010

Chapter 2 — MIPS I-Type Instructions 10

MIPS Shift Operations (R format)

n Shifts move all the bits in a word left or right
sll $t2, $s0, 8 #$t2 = $s0 << 8 bits
srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits

n Instruction Format (R format)

§ Such shifts are called logical because they fill with
zeros
§ Notice that a 5-bit shamt field is enough to shift a 32-bit value

25 – 1 or 31 bit positions.

0 16 10 8 0x00

MIPS Logical Operations
n There are a number of bit-wise logical operations in the

MIPS ISA:
and $t0, $t1, $t2 #$t0 = $t1 & $t2

or $t0, $t1, $t2 #$t0 = $t1 | $t2

nor $t0, $t1, $t2 #$t0 = not($t1 | $t2)
n Instruction Format (R format)

andi $t0, $t1, 0xFF00 #$t0 = $t1 & ff00

ori $t0, $t1, 0xFF00 #$t0 = $t1 | ff00

n Instruction Format (I format)

0 9 10 8 0 0x24

0x0D 9 8 0xFF00

Chapter 2 — MIPS I-Type Instructions 11

Recap

n Talked about MIPS I-type instructions except for program
flow control, like branch and jump instructions.

n Next class – program flow instructions, Booth’s
multiplication algorithm.

