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1 Introduction

A rigid diaphragm analysis is necessary when a roof or floor diaphragm, defined as being rigid, is subjected to
lateral seismic forces. A roof or a floor made of a concrete slab or concrete on metal decking is an example of
a rigid diaphragm. In contrast, flexible diaphragms are usually comprised of large areas of plywood sheathing
or light gauge metal roofing.

Rigid diaphragms are laterally supported by walls (or some other type of lateral resisting element).
Seismic forces are transfered from the diaphragm to the walls. The goal of a rigid diaphragm analysis is
to determine the maximum shear force transferred to each wall by the diaphragm. A number of concepts
are necessary to understand a rigid diaphragm analysis. The needed concepts are presented in the following
sections.

2 A Building Example

The plan view of a building is shown in Figure 1. The building shown has shear walls indicated. Assume
the roof of this building is a solid concrete (slab) rigid diaphragm of constant thickness. The shear walls
support the roof diaphragm laterally. Note that the diaphragm has a weight and the walls have weights
tributary to the diaphragm also. That is, half the wall height has weight tributary to the roof diaphragm
when considering lateral loads resulting from seismic forces. This building example and related calculations
are referred to throughout the remaining sections. Unless noted differently distances are given in feet and
forces are in kips.
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Figure 1: Building Plan View With Shear Walls
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kth element of wt. wk (kips) xk (ft) yk (ft) wkxk wkyk
1 (wall 1) 22.5 0 25 0 562.5
2 (wall 2) 22.5 40 50 900 1125
3 (wall 3) 19.8 80 22 1584 435.6
4 (wall 4) 9.0 70 0 630 0
5 (diaphragm) 200 40 25 8000 5000∑

wk = 273.8
∑

wkxk = 11114
∑

wkyk = 7123.1

Table 1: Calculations Needed To Determine Center of Mass

The building given in Figure 1 is assumed to have the following characteristics:

� The roof diaphragm is a 4 inch thick concrete slab

� The concrete walls are 12 feet tall and 6 inches thick

� For the purposes of the example assume that the calculated seismic coefficient is, Cs = 0.3

� Note that in Figure 1 the seismic shear, V , is acting in the y direction. Earthquakes can act in this
direction or on a separate occasion the earthquake could act along the x direction. Hence, the rigid
diaphragm analysis must check both of these directions. From these two cases the maximum shear for
each wall is used for design. This observation is indicated throughout this document as needed.

� **Note calculations for this example have been carried out with many digits. This is not necessary for
sufficient engineering accuracy. However, for purposes of checking computer generated results more
digits are sometimes helpful and this document can serve this purpose for someone automating the
rigid diaphragm process. At the end the final results are summarized with 3 significant digits.

3 Center of Mass

To do a rigid diaphragm analysis it is necessary to find the center of mass due to all masses that are tributary
to the rigid diaphragm. The diaphragm mass itself is included in this analysis. Although this diaphragm
characteristic is referred to as center of mass the calculations are actually for the center of weight.

To find the center of mass define the origin (0,0) in the lower left corner of the building. From the origin
find (xk, yk) to the center of mass of each element of weight that is tributary to the diaphragm. See Table 1
for calculations.

The center of mass coordinates for the rigid diaphragm analysis are then calculated as

xcm =

∑
wkxk∑
wk

= 40.592ft (1)

and

ycm =

∑
wkyk∑
wk

= 26.016ft. (2)

4 Rigidity of Walls

Rigidity is another name for stiffness. Each shear wall rigidity must be determined. In practice it is sufficient
to find relative rigidities for all the walls. For example, for wall i the relative rigidity is Ri = 1/∆i. To
calculate relative rigidity for walls, ∆i is taken as

∆i = 4

(
hi

Li

)3

+ 3

(
hi

Li

)
, (3)

where hi is the height of the wall and Li is the length of the wall. Equation (3) also assumes all walls have
the same thickness. If this is not the case then (3) would need to be divided by the correct thickness for each
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kth wall hk Lk ∆k Rk

1 (wall 1) 12 50 0.7753 1.2898
2 (wall 2) 12 50 0.7753 1.2898
3 (wall 3) 12 44 0.8993 1.1119
4 (wall 4) 12 20 2.6640 0.3754

Table 2: Relative Rigidity Calculations

wall to obtain the relative rigidities. For the example problem all walls have the same thickness. Hence, (3)
is used directly to obtain the relative rigidities for each wall as demonstrated in Table 2.

5 Center of Rigidity

Seismic forces act on the diaphragm. The diaphragm is supported laterally by the walls. Each wall has a
rigidity. How rigid the walls are and how they are arranged in the building is used to determine the center
of rigidity. Each wall has rigidity when loads act along the length of the wall. Each wall is assumed to have
zero rigidity when loads act perpendicular to the wall.

The rigidity for each wall is determined. Table 2 is converted into an Rkx and Rky rigidity for each wall.
With these rigidities in hand, the center of rigidity is found by using Table 3.

kth wall Rkx Rky xk yk Rkyxk Rkxyk
1 0.0 1.2898 0 25 0 0
2 1.2898 0.0 40 50 0 64.492
3 0.0 1.1119 80 22 88.956 0
4 0.3754 0.0 70 0 0 0∑

Rkx = 1.6652
∑

Rky = 2.4018
∑

Rkyxk = 88.956
∑

Rkxyk = 64.492

Table 3: Calculations Needed to Determine the Center of Rigidity

The center of rigidity coordinates for the rigid diaphragm analysis are then calculated as

xcr =

∑
Rkyxk∑
Rky

= 37.037ft (4)

and

ycr =

∑
Rkxyk∑
Rkx

= 38.729ft. (5)

6 The Polar Moment of Inertia, Jp

The polar moment of inertia is the rotational moment of inertia determined based on the layout and relative
rigidities of the shear walls. The polar moment of inertia is like the J used in mechanics of materials for
torsional stress or torsional stiffness. To calculate this quantity the center of rigidity is taken as the origin
of a new set of coordinates (x̄, ȳ). That is

x̄k = xk − xcr

ȳk = yk − ycr
(6)

With the above new coordinates, (6), in hand, Table 4 illustrates how to calculate the quantities needed
to get Jp.

Jp =
∑

Rkyx̄
2
k +

∑
Rkxȳ

2
k = 4548.7 (7)

3



kth wall Rkx Rky x̄k ȳk Rkyx̄
2
k Rkxȳ

2
k

1 0 1.2898 -37.0375 -13.7289 1769.355 0.0

2 1.2898 0 2.9625 11.2711 0.0 163.8583

3 0 1.1119 42.9625 -16.7289 2052.408 0.0

4 0.3754 0 32.9625 -38.7289 0.0 563.0346∑
Rkyx̄

2
k = 3821.763

∑
Rkxȳ

2
k = 726.8929

Table 4: Polar Moment of Inertia
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Figure 2: Eccentric Shear Replaced With Statically Equivalent, T and Vy: (a) Torsion About C.R., (b) Direct
Shear Acting Through C.R.

7 Torsional Shears

The seismic shear force, V , acts through the center of mass (see Figure 1). Since the center of mass does
not coincide with the center of rigidity, the seismic shear force causes torsion. The shear walls resist the
torsion as shown in Figure 2a. Hence, shear forces develop in the shear walls due to torsion. Note that the
torsion plus direct shear of Figures 2a and 2b are statically equivalent to Figure 1. To simplify the theoretical
presentation the following definitions are set forth:

C.R.= center of rigidity
di = is the distance from C.R. perpendicular to wall i, that is, di is x̄i or ȳi depending on the wall orientation
Ri = wall i rigidity, it is Rix or Riy depending on wall orientation. Note that the rigidity is nonzero along
the wall, the rigidity is zero perpendicular to the wall, and the wall itself is assumed to have no torsional
rigidity about its own centroid. Note also that for now Ri is referred to as the actual rigidity rather than
the relative rigidity.
T = Ve = seismic shear times eccentricity = torsion applied to the diaphragm, when V is due to a seismic
shear acting in the y direction it is called Vy and a separate loading case Vx when it is acting in the x
direction, since earthquakes can act along either coordinate direction of the building
Vi = the shear in wall i reacting to the torsion, T
n = the number of walls resisting the torsion

Torsional equilibrium is required about the C.R. The result is

T −
n∑

i=1

Vidi = 0 ⇒ T =

n∑
i=1

Vidi. (8)
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Note that rigidity is another name for stiffness. As a result

Vi = Ri∆i. (9)

In equation (9) ∆i is the displacement of wall i due to the applied torsion. Furthermore, a key assumption
is that the wall displacement is proportional to distance di from the C.R (similar to the elastic vector
analysis [4]). This assumption leads to the following:

⇒∆i ∝ di

⇒∆i = cdi

⇒ Vi

Ri
= cdi

⇒c =
Vi

Ridi

(10)

In equation (10) c is a constant of proportionality. This constant exists based on the assumption that wall
displacement is proportional to distance di from the C.R. As a result of the last relation

V1

R1d1
=

V2

R2d2
= . . .

Vn

Rndn
. (11)

Now solve for each of the wall shears in terms of the shear in wall 1. This yields

V1 =
V1R1d1
R1d1

, V2 =
V1R2d2
R1d1

, . . . Vn =
V1Rndn
R1d1

. (12)

Substitute (12) into equation (8) to get

T =

n∑
i=1

V1Rid
2
i

R1d1
=

V1

R1d1

n∑
i=1

Rid
2
i . (13)

Then solving for V1 obtain

V1 =
R1d1T∑

Rid2i
. (14)

Generalizing the above solution for wall 1 to the solution for wall j and realizing that the denominator is Jp,
yields

Vj =
RjdjT∑

Rid2i
=

TRjdj
Jp

. (15)

Equation (15) can also be rewritten as x and y wall shears for each wall j.

Vjx =
TRjxȳj

Jp
, Vjy =

TRjyx̄j

Jp
. (16)

Of course each wall only has an x shear or it only has a y shear depending on its orientation. The other
shear direction (perpendicular to the wall) is zero.

8 Direct Shears

Direct shears due to Vy are depicted in Figure 2b. Walls take direct shear in proportion to their rigidity (or
relative rigidity). As a result

Vj = V
Rj∑
i∥V Ri

, (17)

where here
∑

i∥V Ri only includes the sum of rigidities for walls parallel to the direction of the applied
shear, V . Vj is equal to zero for walls perpendicular to V . Table 5 illustrates the direct shear calculations.
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x-Direction Load, Vx = Cs

∑
wk = 82.14 kips y-Direction Load, Vy = Cs

∑
wk = 82.14 kips

jth wall Rjx Vjx jth wall Rjy Vjy

1 0 0 1 1.2898 44.1118

2 1.2898 63.6238 2 0 0

3 0 0 3 1.1119 38.0282

4 0.3754 18.5162 4 0 0∑
Rjx = 1.6652

∑
Rjy = 2.4018

Table 5: Direct Shears for Separate Cases of x or y Loading

9 Real Eccentricity of Diaphragm Shear

The torsion induced on the diaphragm is due to a distance between the line of action of V and the C.R. This
distance is referred to as an eccentricity. An analysis of the diaphragm is necessary for the case of V acting
in the x direction and a completely separate case for V acting in the y direction. When V is acting in the
x direction then the eccentricity is ey = ycm − ycr = −12.7132 ft. When V is acting in the y direction then
the eccentricity is ex = xcm − xcr = 3.5542 ft. These real eccentricities occur due to a difference between
the C.M. and the C.R.

10 Accidental Eccentricity of Diaphragm Shear

The building code [2] requires accidental eccentricities to be included also. These cause an additional amount
of torsion and are required to be 5% of the longest building dimension in each dirction. In this case the
accidental eccentricities are

êx = 0.05(longest x bldg dimension) = 0.05(80) = 4.0ft,

êy = 0.05(longest y bldg dimension) = 0.05(50) = 2.5ft.
(18)

11 Putting It All Together

For each wall three things contribute to the total shear. First, walls parallel to the applied seismic shear have
direct shears according to (17). Second, it is standard practice to include real torsional shears according to
equations (16). That is, the formulas, as derived, automatically provide the correct sign to the calculated
quantity. Last, it is standard practice to add the absolute value of accidentally occurring torsional shears
according to equations (16). In the following subsections the consequences of these standard practices
are evident in the equations, where contributions due to real eccentricities and accidental eccentricities
are added separately. This is easy to accomplish because the total torsion is easily broken up as T =
V (ereal + eaccidental) = V ereal + V eaccidental.

11.1 Case of Seismic Shear Acting in x Direction

In this case the applied seismic shear is labeled as Vx. The total shear for wall j has the following basic
formula

Vj = direct shear + real torsional shear + |accidental torsional shear|. (19)

Using equations (16) and (17) for walls oriented in the x direction the result is [1]

Vjx = Vx
Rjx∑
Rix

+
VxeyRjxȳj

Jp
+

∣∣∣∣VxêyRjxȳj
Jp

∣∣∣∣ , (20)
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x-Direction Load, Vx = 82.14 kips, T = Vxey or Vxêy

jth wall Vjx(real) |Vjx(accidental)| Vjy(real) |Vjy(accidental)|
1 0 0 10.9673 2.1567

2 -3.3375 0.6563 0 0

3 0 0 -10.9673 2.1567

4 3.3375 0.6563 0 0

Table 6: Torsional Shears for Case of x Direction Loading

jth wall Vjx Vjy

1 0 13.1240

2 60.9426 0

3 0 13.1240

4 22.5101 0

Table 7: Total Shears x-direction of loading

where for equation (16) the torsion T has been rewritten as the shear, Vx, times the applicable eccentricity.
For walls oriented in the y direction the result is

Vjy = 0− VxeyRjyx̄j

Jp
+

∣∣∣∣VxêyRjyx̄j

Jp

∣∣∣∣ . (21)

Notice that the walls oriented in the y direction have zero direct shear contribution since the seismic shear
force is acting in the x direction. See results in Table 6 for torsional shears. Using equations (20) and (21)
the total shears are shown in Table 7. In (21) a negative sign on real torsional shears is needed to correctly
report forces as they act on the wall.

11.2 Case of Seismic Shear Acting in y Direction

In this case the applied seismic shear is labeled as Vy. The total shear for wall j has the following basic
formula

Vj = direct shear + real torsional shear + |accidental torsional shear|. (22)

Using equations (16) and (17) for walls oriented in the y direction the result is

Vjy = Vy
Rjy∑
Riy

+
VyexRjyx̄j

Jp
+

∣∣∣∣Vy êxRjyx̄j

Jp

∣∣∣∣ , (23)

where for equation (16) the torsion T has been rewritten as the shear, Vy, times the applicable eccentricity.
For walls oriented in the x direction the result is

Vjx = 0− VyexRjxȳj
Jp

+

∣∣∣∣Vy êxRjxȳj
Jp

∣∣∣∣ . (24)

Notice that the walls oriented in the x direction have zero direct shear contribution since the seismic shear
force is acting in the y direction. See results in Table 8 for torsional shears. Using equations (23) and (24)
the total shears are shown in Table 9. In (24) a negative sign on real torsional shears is needed to correctly
report forces as they act on the wall.

11.3 Wall Shears Used for Design

Each wall j is designed for the worst shear force of the two cases, x seismic loading or y seismic loading.
Hence, from Table 7 and Table 9 the maximum possible shear for each wall is summarized in Table 10.
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y-Direction Load, Vy = 82.14 kips, T = Vyex or Vy êx

jth wall Vjx(real) |Vjx(accidental)| Vjy(real) |Vjy(accidental)|
1 0 0 -3.0661 3.4507

2 0.9331 1.0501 0 0

3 0 0 3.0661 3.4507

4 -0.9331 1.0501 0 0

Table 8: Torsional Shears for Case of x Direction Loading

jth wall Vjx Vjy

1 0 44.4964

2 1.9832 0

3 0 44.5450

4 1.9832 0

Table 9: Total Shears y-direction of loading

jth wall Vj(max) (kips)

1 44.5

2 60.9

3 44.5

4 22.5

Table 10: Maximum Shears for Design
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12 Concluding Comments

1. Shear walls are used in the above presentation. However, the lateral resisting elements, and their
associated rigidities, could just as easily have been some other type of lateral resisting element such
as braced frames, moment frames or steel shear walls to name a few. Rigidities for any type of lateral
resisting element is easily found by applying a 1 kip lateral load to the top of the element. The resulting
horizontal displacement, ∆, can be used to calculate the rigidity, R = 1/∆.

2. In the example, analysis weights tributary to the diaphragm from the shear walls and the diaphragm
are included, however, it is likely that in a real life analysis there are many other dead loads that would
need to be included. Some examples are columns, mechanical units, beams supporting the diaphragm
or ceiling dead loads to name a few.

3. Torsional shears due to accidental torsion have absolute values added to the wall shear because the
intent of the code is that they always increase direct shears [1].

4. In some implementations of a rigid diaphragm analysis the rigidities are normalized. This is accom-
plished by first searching through all walls in the building and finding the one with the maximum
rigidity. Second, all walls are divided by the maximum rigidity. Hence, after this is done the maxi-
mum possible rigidity is 1.0. This process of normalization will of course change the rigidities used
throughout the analysis, but also changes the value of Jp from what it would have been if normalization
had not been done. The normalization process is not necessary, but sometimes is helpful to make the
numbers in calculations easier to work with. The final design shears should come out the same whether
normalization is done or not.

5. With the formulas provided it is a straight forward matter to automate a rigid diaphragm analysis in
a computer program for any number of shear walls.

6. The present derivation is presented for walls that are oriented only in the x or y directions. It is
possible to create a formulation that accounts for walls at an angle to the x axis [3]. However, this
case has not been considered herein.

References

[1] SEAOC Structural/Seismic Design Manual 2009 IBC. Structural Engineers Association of California,
Sacramento, CA, 2012.

[2] ASCE. Minimum Design Loads for Buildings and Other Structures - ASCE 7-10. American Society of
Civil Engineers, Reston, Virginia, 2010.

[3] Gregg Brandow, Gary Hart, and Ajit Virdee. Design of Reinforced Masonry Structures. Concrete
Masonry Association of California and Nevada, Citrus Heights, California, 1995.

[4] Charles G. Salmon, Johne E. Johnson, and Faris A. Malhas. Steel Structures. Pearson Prentice Hall,
Upper Saddle River, New Jersey, 5th edition, 2009.

9


