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1. The eigenvalue/eigenvector problem

Find vector v and scalar λ that satisfies the following:

Kv = λv (1)

where,
K = nxn matrix
v = nx1 vector, an eigenvector
λ= a scalar, an eigenvalue

n vector and scalar pairs will satisfy equation (1). How to find
such pairs is a linear algebra problem.

Equation (1) arises on occasion during the solution of various
types of engineering problems



1. The eigenvalue/eigenvector problem

An example (3x3 matrix ⇒ 3 eigenvalues and 3 eigenvectors):
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MATLAB solution to eigenvalue problem:

τ1 = 2.17, v =





−0.64
0.62
−0.46



 , τ2 = 9.29, v =





0.55
−0.05
−0.83



 , (4)

τ3 = 21.54, v =





−0.54
−0.78
−0.31







2. Principal stresses and directions in stress analysis

Consider a two dimension problem. A cantilever beam loaded
at its free end.
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2. Principal stresses and directions in stress analysis

Stress block from point A
y
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2. Principal stresses and directions in stress analysis

MATLAB solution to eigen problem:

y

z

x

τ1 = 0.78

τ3 = 15.8

Units of ksi

12.5
◦

τ2 = 0

v2

v1

v3

τ1 = −0.78, v1 =





0.2166
0.9763
0.0000



 ,

τ2 = 0.00, v2 =





0.0000
0.0000
1.0000



 ,

τ3 = 15.8, v3 =





0.9763
−0.2166
0.0000







3. Fundamental frequencies and mode shapes in
vibrations

Numerical Eigen problem solution

2D FEA of cantilever

x & y dofs at 189 nodes
(2 x 189 = 378 dofs)

⇒ 378 eigenvalues &
eigenvectors

⇒ 378 frequencies &
mode shapes

Eigenvectors are 378th
dimensional vectors!

K̄v = λv, K̄ = 378x378 in
this example!
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4. Critical loads & buckled shapes in buckling analysis
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A deformed shape equilibrium analysis results in the following:
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4. Critical loads & buckled shapes in buckling analysis

For the case of
L = 10 inches
k1 = 30 kip-in/rad
k2 = 30 kip-in/rad
k3 = 30 kip-in/rad

Eigenvalue = Pcr L
3

Eigenvector ⇒ shape
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5. Applications in electrical engineering
- feedback and control

Outline of conceptual feedback and control

Model dynamic system such as airplane, car, rocket

Mφ̈+ Cφ̇+ Kφ = F(t)

The mathematical model of the system has inherent
eigenvalues and eigenvectors

Eigenvalues describe resonant frequencies where the
system will have its largest, often excessive, response.

We can choose F(t) to reduce the system response at the
resonant frequencies.



5. Applications in electrical engineering
- feedback and control

Perhaps let F(t) = Aφ̇+ Bφ and insert into dynamic
system model

The new system is Mφ̈+ C̄φ̇+ K̄φ = 0
where C̄ = C − A = velocity dependent damping

and K̄ = K − B = displacement dependent forcing

We can adjust A and B so that the eigenvalues of the new
‘barred’ system are different from the original system

By doing so we cause (control) the system to avoid
excessive vibration or instability
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6. Principal mass moment of inertia in 3D

3D kinetics of a rigid body
Inertia tensor (components dependent on X̄ Ȳ Z̄ coordinate
axes orientation)

I =





Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz





It is possible to orient the axes such that

I =





Ix 0 0
0 Iy 0
0 0 Iz







6. Principal mass moment of inertia in 3D
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In X̄ Ȳ Z̄ coordinate system

I =





Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz





Ix , Iy , Iz are eigenvalues
vx , vy , vz are eigenvectors wrt X̄ Ȳ Z̄

In XYZ coordinates

I =





Ix 0 0
0 Iy 0
0 0 Iz







Conclusion

A few comments:

Many applications of eigenvalues and eigenvectors in
engineering

K is not always symmetric

eigenvalues are not always positive or real

eigenvectors are orthogonal

eigenvalues are invariant wrt to choice of coordinate axes



Questions.

Kθ =?θ


