Twenty-Sixth Annual WWU University Days

MATHEMATICS COMPETITION 2013

Winn	ners — Pas	— Past Five Years		
	1st	2nd		
2008	WWVA	UCA		
2009	UCA	MAA		
2010	WWVA	UCA		
2011	CCA	MEA		
2012	UCA	MEA		

team member(s)	head math teacher	academy/h.s.

This is a *TEAM* competition. Your answers will be graded based both on **CORRECTNESS** and on the **QUAL-ITY** of your presentation. Show your work *neatly* and indicate your answers *clearly*. Answers *without* justification will receive *no* credit. Please place *no more than* one (1) solution per page. When you are done, arrange your *team* solutions in numerical order (1, 2, 3, ..., 10) before you hand them in. Good luck!!

- 1. The number $2013 = 3 \cdot 11 \cdot 61$. Subtract 1 from each of these factors and collect all the *prime* factors of these three new numbers. How many distinct products are possible using one or more of this collection of primes?
- 2. A company sells detergent in three different sized boxes: small (S), medium (M), and large (L). The medium size costs 50% more than the small size and contains 20% less detergent than the large size. The large size contains twice as much detergent as the small size and costs 30% more than the medium size. Rank the three sizes from "best buy" to "worst buy," e.g., LMS.
- 3. Alice and Bob play a game involving a circle whose circumference is divided by twelve equally spaced points. the points are numbered clockwise, from 1 through 12. Both start on point 12. Alice moves clockwise, and Bob moves counterclockwise. In each turn of the game, Alice moves through 5 points, and Bob moves through 9 points. The game ends when they stop at the same point. How many turns will this take?
- 4. Consider the "squareflake" curve given by the limit of the following sequence of figures which start with a

Notice that at each stage there is a "tab" on each edge that sticks out 1/3 and has width 1/3 of the length of each edge of the previous stage. The new tabs *never* overlap each other. Notice also that stage 3 has 8 square holes. Find the area of the region inside the "limiting" curve.

- 5. Find an equation of the parabola, whose graph is a function y of x, passing through the points (1,2), (3,-2), and (2,1).
- 6. John Gault bought a one-year-old automobile. John wanted to use only pure synthetic motor oil but, rather than change the oil all at once, he thought that he would change it one quart at a time in the following way: Every 1000 miles he would remove the old oil filter with its one quart of oil, put on a new empty filter, and then add a quart of the new synthetic oil. Assuming that the engine and filter hold a total of 5 quarts of oil, how many one-quart changes will he have to make in order for the engine to have at least 3 quarts of the synthetic oil?
- 7. Sketch the graph of $|x|^{1/3} + |y|^{1/3} = 1$. Justify your graph!
- 8. An isosceles right triangle ABC encloses a semicircle of area 2π . The circle has its center O on the hypotenuse \overline{AB} and is tangent to sides \overline{AC} and \overline{BC} . What is the area of triangle ABC?
- 9. Solve: |5 x| < |x + 4|.
- 10. Solve: $\cos 2t + \sin t = 0$.

Solutions: (Remember: No credit for guessing!)

1. We have 2, 10 = 2.5, and $60 = 2^2.3.5$. Consider first the factors 2, 4, 3, 5. The number of distict products is

$$\binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 2^4 - 1 = 15.$$

Note that these products also include factors of 8 but neither 16 nor 25. To get the products with a factor 25 and not 16, we simply count all products involving 2, 4, and 3 for another $2^3 = 8$. Now, toss in the two products $16 \cdot 25$ and $16 \cdot 3 \cdot 25$. This completes the products with a factor of 25. There are remaining 4 products involving 16 and any combination of 3 and 5 for a total of 15 + 8 + 2 + 4 = 29 products.

2. Neither the units of size nor the costs are important to this problem. So for convenience, we suppose that the small box costs 1\$ and weighs 10 ounces. Then we compare their relative value using cost per unit of weight:

$$S: \frac{\$1}{10} = \$0.10 \,\mathrm{per} \,\mathrm{oz}. \quad M: \frac{\$1.50}{16} = \$0.09375 \,\mathrm{per} \,\mathrm{oz}. \quad L: \frac{1.3 \times \$1.50}{20} = \$0.0975 \,\mathrm{per} \,\mathrm{oz}.$$

The correct answer is MLS.

3. The game will end after 6 turns. Observe the points where each player is after each turn:

4. The area is

$$A = 1 + 4 \cdot \left(\frac{1}{3}\right)^2 + 5 \cdot 4 \cdot \left(\left(\frac{1}{3}\right)^2\right)^2 + 5^2 \cdot 4 \cdot \left(\left(\left(\frac{1}{3}\right)^2\right)^2\right)^2 + \cdots$$

$$= 1 + 4 \cdot \frac{1}{9} + 5 \cdot 4 \cdot \left(\frac{1}{9}\right)^2 + 5^2 \cdot 4 \cdot \left(\frac{1}{9}\right)^3 + \cdots$$

$$= 1 + \frac{4}{9} + \frac{4}{9} \cdot \frac{5}{9} + \frac{4}{9} \cdot \left(\frac{5}{9}\right)^2 + \cdots$$

$$= 1 + \frac{4/9}{1 - 5/9}$$

$$= 1 + 1 = 2.$$

5. So, $y = ax^2 + bx + c$. The points are not colinear. Fill in for x and y and get the system:

Solve and get: a = -1, b = 2, and c = 1.

6.

Oil change	1	2	3	4	5
Syn out	0	$\frac{1}{5}$	$\frac{1}{5} \cdot \frac{9}{5}$	$\frac{1}{5} \cdot \frac{61}{25}$	$\frac{1}{5} \cdot \frac{369}{125}$
Syn in	1	1	1	1	1
Tot Syn	1	$\frac{9}{5}$	$\frac{4.9}{25} + \frac{25}{25}$	$\frac{4.61}{125} + \frac{125}{125}$	$\frac{4\cdot369}{625} + \frac{625}{625}$

Now note that $\frac{369}{125} < 3$ but $\frac{4 \cdot 369 + 625}{625} = \frac{2101}{625} > \frac{1875}{625} = 3$. Whew!

7. First note that the graph is symmetric w.r.t. both axes. Note also that the points (0,1) and (1,0) lie on the graph as do the points (1/8,1/8), (1/27,8/27), and (8/27,1/27). Connect with a smooth curve in the first quadrant. Reflect graph appropriately.

- 8. 8. (Nice, huh!) OK, OK: The area of the semicircle is 2π so the area of the whole circle is $4\pi = \pi r^2$. Thus the radius of the circle is 2. Hence, the circle has diameter d=4 which means the triangle has area $A=\frac{1}{2}\cdot 4\cdot 4=8$.
- 9. Set up a signed graph for the quantities without absolute value. Note that they are equal at x = 1/2. Note also that the original inequality can never hold for negative x. The solution interval then is $(1/2, \infty)$.
- 10. We solve $1 2\sin^2 t + \sin t = 0$ or, $2\sin^2 t \sin t 1 = 0$. Thus $(2\sin t + 1)(\sin t 1) = 0$ or $\sin t = -1/2$ and $\sin t = 1$. Hence, $t = 7\pi/6 + 2k\pi$ and $t = 11\pi/6 + 2k\pi$ where k is any integer. For the other piece, $\sin t = 1$ so that $t = \pi/2 + 2k\pi$ where, again, k is any integer.