The Silver Anniversary!!

Twenty-Fifth Annual WWU University Days Mathematics Competition 2012

Winners - Past Five Years				
1st				2nd
2007	CAA	UCA		
2008	WWVA	UCA		
2009	UCA	MAA		
2010	WWVA	UCA		
2011	CCA	MEA		

team member(s)
head math teacher
academy/h.s.
This is a TEAM competition. Your answers will be graded based both on CORRECTNESS and on the QUALITY of your presentation. Show your work neatly and indicate your answers clearly. Answers without justification will receive no credit. Please place no more than one (1) solution per page. When you are done, arrange your team solutions in numerical order $(1,2,3, \ldots, 10)$ before you hand them in. Good luck!!

1. Let S be the set of the 2012 smallest positive multiples of 4 , and let T be the set of the 2012 smallest positive multiples of 6 . How many elements are common to the sets S and T ?
(a) 503
(b) 2012
(c) 606
(d) 670
(e) 566
2. An equiangular octagon has four sides of length 1 and four sides of length $\frac{\sqrt{2}}{2}$ arranged so that no two consecutive sides have the same length. What is the area of the octagon?
3. A solid large cube of edge length $n(n \geq 2)$ is made up of cubes of edge length 1 (unit cubes). The surfaces of the large cube are then painted red. Find an expression in n which gives the number of unit cubes which have no red paint on them.
4. In an arcade game, the "monster" is the shaded sector of a circle of radius 1 cm , as shown in the figure to the right. The missing piece (the mouth) has central angle 60 deg . What is the perimeter of the monster in cm ?

5. Given that $\log _{10} 2=0.3010299957 \ldots$ and $\log _{10} 3=0.4771212547 \ldots$, what is the number of digits in the decimal expansion of 12^{10} ?
6. A parabola $y=a x^{2}+b x+c$ has vertex $(4,2)$. If $(2,0)$ is on the parabola, find the product $a b c$.
7. Six distinct integers are picked at random from $\{1,2,3, \ldots, 10\}$. What is the probability that, among those selected, the second smallest is 3 ?
8. Given that triangles $\triangle A B C, \triangle C D E, \triangle E F G, \triangle G H I, \triangle I J K$, and $\triangle K L M$ in the figure to the right are all congruent, and that they are all similar to $\triangle A N M$, what is the ratio of the area of $\triangle A N M$ to $\triangle A B C$?
9. Each integer 1 through 9 is written on a separate slip of paper and all nine slips are put into a hat. Jack picks one of these slips at random and puts it back. Then Jill picks a slip at random. Which digit is most likely to be the units digit of the sum of Jack's integer and Jill's integer?
(a) 0
(b) 1
(c) 8
(d) 9
(e) Each digit is equally likely.
10. Assuming that the square in the given diagram at right-hand side is being divided at its midpoints at each stage, that the pattern continues indefinitely, and that the original edge-length is 1 , find the total area of the shaded portion. Note that two quarter-squares are added to the shaded region every-other time.

Solutions:

1. (d) 670 elements (see sheet for calculations)
2. $\frac{7}{2}$ square units (see sheet for geometry and calculations)
3. $n^{3}-\left(6 n^{2}-12 n+8\right)$.
4. $2 \pi r-(2 \pi r) / 6+2=\frac{5 \pi}{3}+2$.
5. The number of digits in the decimal expansion is the ceiling of $\log 12^{10}$. This is:
$\log 12^{10}=10 \log 12=10 \log (4 \cdot 3)=10(\log 4+\log 3)=10(2 \log 2+\log 3)=10(2(0.301029957)+0.4771212547) \approx 10(0.60$
Therefore, there are 11 digits in the decimal expansion of 12^{10}.

$$
\begin{array}{r}
16 a+4 b+c=2 \\
4 a+2 b+c=0 \\
36 a+6 b+c=0
\end{array}
$$

6. By symmetry, $(6,0)$ is also on the parabola. This gives us three equations: $4 a+2 b+c=0$. The
solution is $a=-1 / 2, b=4$, and $c=-6$ so $a b c=12$.
7. $1 / 3$
8. Note that there are $6+5+4+3+2+1$ small triangles pointing up and $5+4+3+2+1$ small triangles pointing down for a total of $21+15=36$. Thus the ratio is $36: 1$. Alt: Since the smaller triangles are all congruent, the measures of $A C, C E, E G, G I, I K$, and $K M$ are all equal. Call this length y. Then $6 y=A M$, and the scaling factor between the smaller triangles and the larger similar triangles is 1:6. Let x be the length of the altitude of $\triangle A B C$ which bisects $\overline{A C}$. Then the length of the altitude of $\triangle A N M$ bisecting $\overline{A M}$ is $6 x$. Therefore, the ratio of the area of $\triangle A N M$ to the area of $\triangle A B C$ is:

$$
\frac{0.5(6 y)(6 x)}{0.5(y x)}=\frac{36}{1}
$$

or $36: 1$.
9. (a) Regardless of the digit Jack chooses, the sum 10 is always possible. No other sum is always possible.
10. $A=\left(\frac{1}{2}\right)^{2}+2 \cdot\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{8}\right)^{2}+2 \cdot\left(\frac{1}{2^{4}}\right)^{2}+\left(\frac{1}{2^{5}}\right)^{2}+2 \cdot\left(\frac{1}{2^{6}}\right)^{2} \ldots+$ which yields two geometric series:
$\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2^{3}}\right)^{2}+\left(\frac{1}{2^{5}}\right)^{2}+\cdots=\frac{1 / 4}{1-1 / 16}$ and
$2 \cdot\left[\left(\frac{1}{2^{2}}\right)^{2}+\left(\frac{1}{2^{4}}\right)^{2}+\left(\frac{1}{2^{6}}\right)^{2}+\cdots=\frac{1 / 16}{1-1 / 64}\right.$ for a total of $\frac{4}{15}+\frac{16}{63}=\frac{80+84}{63 \cdot 5}=\frac{164}{315}$.

